Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 450573, 7 pages
http://dx.doi.org/10.1155/2014/450573
Research Article

Detection of Epileptic Seizure Event and Onset Using EEG

Department of Electrical Engineering, National Institute of Technology, Calicut, Kerala 673601, India

Received 29 April 2013; Revised 15 November 2013; Accepted 17 November 2013; Published 29 January 2014

Academic Editor: Gabriela Mustata Wilson

Copyright © 2014 Nabeel Ahammad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. U. Khan, O. Farooq, and P. Sharma, “Automatic detection of seizure onset in pediatric EEG,” International Joural of Embeded Systems and Applications, vol. 2, no. 3, pp. 81–89, 2012. View at Google Scholar
  2. E. D. Übeyli, “Statistics over features: EEG signals analysis,” Computers in Biology and Medicine, vol. 39, no. 8, pp. 733–741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Adeli, Z. Zhou, and N. Dadmehr, “Analysis of EEG records in an epileptic patient using wavelet transform,” Journal of Neuroscience Methods, vol. 123, no. 1, pp. 69–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sanei and J. A. Chambers, EEG Signal Processing, Centre of Digital Signal Processing, Cardiff University, Cardiff, UK, 2007.
  5. J. Gotman, “Automatic recognition of epileptic seizures in the EEG,” Electroencephalography and Clinical Neurophysiology, vol. 54, no. 5, pp. 530–540, 1982. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Shoeb and J. Guttag, “Application of machine learning to epileptic seizure detection,” in Proceedings of the 27th International Conference on Machine Learning (ICML '10), pp. 975–982, Haifa, Israel, June 2010. View at Scopus
  7. N. Sivasankari and K. Thanushkodi, “Automated epileptic seizure detection in EEG signals using FastICA and neural network,” International Journal of Advances in Soft Computing and Its Applications, vol. 1, no. 2, pp. 91–104, 2009. View at Google Scholar · View at Scopus
  8. E. D. Übeyli, “Wavelet/mixture of experts network structure for EEG signals classification,” Expert Systems with Applications, vol. 34, no. 3, pp. 1954–1962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Fathima, M. Bedeeuzzaman, O. Farooq, and Y. U. Khan, “Wavelet based feature for Epileptic Seizure Detection,” MES Journal of Technology and Management, vol. 2, no. 1, pp. 108–112, 2011. View at Google Scholar
  10. I. Daubechies, “Wavelet transform, time-frequency localization and signal analysis,” IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961–1005, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Gandhi, B. K. Panigrahi, M. Bhatia, and S. Anand, “Expert model for detection of epileptic activity in EEG signature,” Expert Systems with Applications, vol. 37, no. 4, pp. 3513–3520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. D. Übeyli, “Combined neural network model employing wavelet coefficients for EEG signals classification,” Digital Signal Processing, vol. 19, no. 2, pp. 297–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Qu and J. Gotham, “A patient-specific algorithm for the detection of seizure onset in long- term EEG monitoring: possible use as a warning device,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 2, pp. 115–122, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. K. C. Chua, V. Chandran, R. Aeharya, and C. M. Lim, “Higher order spectral (HOS) analysis of epileptic EEG signals,” in Proceedings of the 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society (EMBC '07), pp. 6495–6498, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Yaylali, H. Koçak, and P. Jayakar, “Detection of seizures from small samples using nonlinear dynamic system theory,” IEEE Transactions on Biomedical Engineering, vol. 43, no. 7, pp. 743–751, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Niknazar, S. R. Mousavi, B. Vosoughi Vahdat, M. B. Shamsollahi, and M. Sayyah, “A new dissimilarity index of EEG signals for epileptic seizure detection,” in Proceedings of the 4th International Symposium on Communications, Control, and Signal Processing (ISCCSP '10), Limassol, Cyprus, March 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. U. Khan and J. Gotman, “Wavelet based automatic seizure detection in intracerebral electroencephalogram,” Clinical Neurophysiology, vol. 114, no. 5, pp. 898–908, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. K. Kiymik, I. Güler, A. Dizibüyük, and M. Akin, “Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application,” Computers in Biology and Medicine, vol. 35, no. 7, pp. 603–616, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. L. Sorensen, U. L. Olsen, I. Conradsen et al., “Automatic epileptic seizure onset detection using Matching Pursuit: a case study,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '10), pp. 3277–3280, 2010.
  20. M. Unser and A. Aldroubi, “A review of wavelets in biomedical applications,” Proceedings of the IEEE, vol. 84, no. 4, pp. 626–638, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Hazarika, J. Z. Chen, A. C. Tsoi, and A. Sergejew, “Classification of EEG signals using the wavelet transform,” Signal Processing, vol. 59, no. 1, pp. 61–72, 1997. View at Google Scholar · View at Scopus
  22. J. Engel Jr., “A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology,” Epilepsia, vol. 42, no. 6, pp. 796–803, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. U. Khan and O. Farooq, “Autoregressive features based classification for seizure detection using neural network in scalp Electroencephalogram,” International Journal of Biomedical Engineering and Technology, vol. 2, no. 4, pp. 370–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state,” Physical Review E, vol. 64, no. 6, Article ID 061907, pp. 1–8, 2001. View at Google Scholar · View at Scopus
  25. Y. Song and P. Liò, “A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine,” Journal of Biomedical Science and Engineering, vol. 3, no. 6, pp. 556–567, 2010. View at Google Scholar