Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 452315, 9 pages
http://dx.doi.org/10.1155/2014/452315
Review Article

Metabolism of Cartilage Proteoglycans in Health and Disease

Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece

Received 30 April 2014; Accepted 16 June 2014; Published 3 July 2014

Academic Editor: George Tzanakakis

Copyright © 2014 Demitrios H. Vynios. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. E. Hardingham and A. J. Fosang, “Proteoglycans: many forms and many functions,” The FASEB Journal, vol. 6, no. 3, pp. 861–870, 1992. View at Google Scholar · View at Scopus
  2. R. V. Iozzo, “Matrix proteoglycans: from molecular design to cellular function,” Annual Review of Biochemistry, vol. 67, pp. 609–652, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. N. B. Schwartz and M. Domowicz, “Chondrodysplasias due to proteoglycan defects,” Glycobiology, vol. 12, no. 4, pp. 57R–68R, 2002. View at Google Scholar · View at Scopus
  4. M. S. Lord and J. M. Whitelock, “Recombinant production of proteoglycans and their bioactive domains,” The FEBS Journal, vol. 280, no. 10, pp. 2490–2510, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. S. W. Sajdera and V. C. Hascall, “Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures.,” Journal of Biological Chemistry, vol. 244, no. 1, pp. 77–87, 1969. View at Google Scholar · View at Scopus
  6. A. Aspberg, “The different roles of aggrecan interaction domains,” Journal of Histochemistry and Cytochemistry, vol. 60, no. 12, pp. 987–996, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Buraschi, T. Neill, A. Goyal et al., “Decorin causes autophagy in endothelial cells via Peg3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 28, pp. E2582–E2591, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. E. F. Neufeld and J. Muenzer, “The mucopolysaccharidoses,” in The Metabolic and Molecular Bases of Inherited Disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds., pp. 3421–3452, McGraw Hill, New York, NY, USA, 8th edition, 2001. View at Google Scholar
  9. T. Neill, L. Schaefer, and R. V. Iozzo, “Decorin: a guardian from the matrix,” The American Journal of Pathology, vol. 181, no. 2, pp. 380–387, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. V. Nastase, M. F. Young, and L. Schaefer, “Biglycan: a multivalent proteoglycan providing structure and signals,” Journal of Histochemistry and Cytochemistry, vol. 60, no. 12, pp. 963–975, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Brew, P. D. Clegg, R. P. Boot-Handford, J. G. Andrew, and T. Hardingham, “Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy,” Annals of the Rheumatic Diseases, vol. 69, no. 1, pp. 234–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Stevens, “Swarm chondrosarcoma: a continued resource for chondroblastic-like extracellular matrix and chondrosarcoma biology research,” Connective Tissue Research, vol. 54, no. 4-5, pp. 252–259, 2013. View at Publisher · View at Google Scholar
  13. M. Stylianou, S. S. Skandalis, T. A. Papadas et al., “Stage-related decorin and versican expression in human laryngeal cancer,” Anticancer Research A, vol. 28, no. 1, pp. 245–252, 2008. View at Google Scholar · View at Scopus
  14. A. Varki, R. D. Cummings, J. D. Esko et al., Eds., Essentials of Glycobiology, Cold Spring Harbor, New York, NY, USA, 2nd edition, 2009.
  15. T. Mikami and H. Kitagawa, “Biosynthesis and function of chondroitin sulfate,” Biochimica et Biophysica Acta, vol. 1830, no. 10, pp. 4719–4733, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Kitagawa, T. Uyama, and K. Sugahara, “Molecular cloning and expression of a human chondroitin synthase,” The Journal of Biological Chemistry, vol. 276, no. 42, pp. 38721–38726, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Kitagawa, T. Izumikawa, T. Uyama, and K. Sugahara, “Molecular cloning of a chondroitin polymerizing factor that cooperates with chondroitin synthase for chondroitin polymerization,” Journal of Biological Chemistry, vol. 278, no. 26, pp. 23666–23671, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Izumikawa, T. Uyama, Y. Okuura, K. Sugahara, and H. Kitagawa, “Involvement of chondroitin sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymerization through its interaction with chondroitin synthase-1 or chondroitin-polymerizing factor,” Biochemical Journal, vol. 403, no. 3, pp. 545–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Izumikawa, T. Koike, S. Shiozawa, K. Sugahara, J. Tamura, and H. Kitagawa, “Identification of chondroitin sulfate glucuronyltransferase as chondroitin synthase-3 involved in chondroitin polymerization: chondroitin polymerization is achieved by multiple enzyme complexes consisting of chondroitin synthase family members,” The Journal of Biological Chemistry, vol. 283, no. 17, pp. 11396–11406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Yada, M. Gotoh, T. Sato et al., “Chondroitin sulfate synthase-2: molecular cloning and characterization of a novel human glycosyltransferase homologous to chondroitin sulfate glucuronyltransferase, which has dual enzymatic activities,” Journal of Biological Chemistry, vol. 278, no. 32, pp. 30235–30247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Yamauchi, S. Mita, T. Matsubara et al., “Molecular cloning and expression of chondroitin 4-sulfotransferase,” Journal of Biological Chemistry, vol. 275, no. 12, pp. 8975–8981, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Hiraoka, H. Nakagawa, E. Ong, T. O. Akama, and M. N. Fukuda, “Molecular cloning and expression of two distinct human chondroitin 4-O-sulfotransferases that belong to the HNK-1 sulfotransferase gene family,” Journal of Biological Chemistry, vol. 275, no. 26, pp. 20188–20196, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. H. G. Kang, M. R. Evers, G. Xia, J. U. Baenziger, and M. Schachner, “Molecular cloning and characterization of chondroitin-4-O-sulfotransferase-3: a novel member of the HNK-1 family of sulfotransferases,” The Journal of Biological Chemistry, vol. 277, no. 38, pp. 34766–34772, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Evers, G. Xia, H. G. Kang, M. Schachner, and J. U. Baenziger, “Molecular cloning and characterization of a dermatan-specific N-acetylgalactosamine 4-O-sulfotransferase,” Journal of Biological Chemistry, vol. 276, no. 39, pp. 36344–36353, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Mikami, S. Mizumoto, N. Kago, H. Kitagawa, and K. Sugahara, “Specificities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfotransferases demonstrated using partially desulfated dermatan sulfate as an acceptor: implication of differential roles in dermatan sulfate biosynthesis,” The Journal of Biological Chemistry, vol. 278, no. 38, pp. 36115–36127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Fukuta, Y. Kobayashi, K. Uchimura, K. Kimata, and O. Habuchi, “Molecular cloning and expression of human chondroitin 6-sulfotransferase,” Biochimica et Biophysica Acta—Gene Structure and Expression, vol. 1399, no. 1, pp. 57–61, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Mitchell and T. Hardingham, “The control of chondroitin sulphate biosynthesis and its influence on the structure of cartilage proteoglycans,” Biochemical Journal, vol. 202, no. 2, pp. 387–395, 1982. View at Google Scholar · View at Scopus
  28. T. Izumikawa, T. Koike, and H. Kitagawa, “Chondroitin 4-O-sulfotransferase-2 regulates the number of chondroitin sulfate chains initiated by chondroitin N-acetylgalactosaminyltransferase-1,” Biochemical Journal, vol. 441, no. 2, pp. 697–705, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Izumikawa, Y. Okuura, T. Koike, N. Sakoda, and H. Kitagawa, “Chondroitin 4-O-sulfotransferase-1 regulates the chain length of chondroitin sulfate in co-operation with chondroitin N-acetylgalactosaminyltransferase-2,” Biochemical Journal, vol. 434, no. 2, pp. 321–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. L. J. Burditt, A. Ratcliffe, P. R. Fryer, and T. E. Hardingham, “The intracellular localisation of proteoglycans and their accumulation in chondrocytes treated with monensin,” Biochimica et Biophysica Acta: Molecular Cell Research, vol. 844, no. 2, pp. 247–255, 1985. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Kresse, J. Glössl, W. Hoppe, U. Rauch, and E. Quentin, “Biosynthesis and processing of proteodermatan sulphate,” Ciba Foundation Symposium Series, vol. 124, pp. 89–103, 1986. View at Google Scholar · View at Scopus
  32. D. G. Wilson, K. Phamluong, W. Y. Lin et al., “Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning,” Developmental Biology, vol. 363, no. 2, pp. 413–425, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Ogawa, S. Hatano, N. Sugiura et al., “Chondroitin sulfate synthase-2 Is necessary for chain extension of chondroitin sulfate but not critical for skeletal development,” PLoS ONE, vol. 7, no. 8, Article ID e43806, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Watanabe, K. Takeuchi, S. Higa Onaga et al., “Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development,” Biochemical Journal, vol. 432, no. 1, pp. 47–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Sato, T. Kudo, Y. Ikehara et al., “Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism,” The Journal of Biological Chemistry, vol. 286, no. 7, pp. 5803–5812, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Li, K. Laue, S. Temtamy et al., “Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in chondroitin synthase 1, a potential target of BMP signaling,” The American Journal of Human Genetics, vol. 87, no. 6, pp. 757–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Tian, L. Ling, M. Shboul et al., “Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling,” The American Journal of Human Genetics, vol. 87, no. 6, pp. 768–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Kalathas, I. E. Triantaphyllidou, N. S. Mastronikolis et al., “The chondroitin/dermatan sulfate synthesizing and modifying enzymes in laryngeal cancer: Expressional and epigenetic studies,” Head and Neck Oncology, vol. 2, no. 1, article no. 27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Funderburgh, “Keratan sulfate biosynthesis,” IUBMB Life, vol. 54, no. 4, pp. 187–194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. F. P. Barry, L. C. Rosenberg, J. U. Gaw, T. J. Koob, and P. J. Neame, “N- and O-linked keratan sulfate on the hyaluronan binding region of aggrecan from mature and immature bovine cartilage,” The Journal of Biological Chemistry, vol. 270, no. 35, pp. 20516–20524, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Platt, J. L. Bird, and M. T. Bayliss, “Ageing of equine articular cartilage: structure and composition of aggrecan and decorin,” Equine Veterinary Journal, vol. 30, no. 1, pp. 43–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Troeberg and H. Nagase, “Proteases involved in cartilage matrix degradation in osteoarthritis,” Biochimica et Biophysica Acta, vol. 1824, no. 1, pp. 133–145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Struglics and M. Hansson, “Calpain is involved in C-terminal truncation of human aggrecan,” Biochemical Journal, vol. 430, no. 3, pp. 531–538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Fonović and B. Turk, “Cysteine cathepsins and extracellular matrix degradation,” Biochimica et Biophysica Acta, 2014. View at Publisher · View at Google Scholar
  45. H. Stanton, J. Melrose, C. B. Little, and A. J. Fosang, “Proteoglycan degradation by the ADAMTS family of proteinases,” Biochimica et Biophysica Acta-Molecular Basis of Disease, vol. 1812, no. 12, pp. 1616–1629, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. W. Ariyoshi, C. B. Knudson, N. Luo, A. J. Fosang, and W. Knudson, “Internalization of aggrecan G1 domain neoepitope ITEGE in chondrocytes requires CD44,” Journal of Biological Chemistry, vol. 285, no. 46, pp. 36216–36224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. A. J. Fosang, P. J. Neame, T. E. Hardingham, G. Murphy, and J. A. Hamilton, “Cleavage of cartilage proteoglycan between G1 and G2 domains by stromelysins,” Journal of Biological Chemistry, vol. 266, no. 24, pp. 15579–15582, 1991. View at Google Scholar · View at Scopus
  48. C. E. Hughes, C. B. Little, F. H. Büttner, E. Bartnik, and B. Caterson, “Differential expression of aggrecanase and matrix metalloproteinase activity in chondrocytes isolated from bovine and porcine articular cartilage,” The Journal of Biological Chemistry, vol. 273, no. 46, pp. 30576–30582, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. S. S. Apte, “A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family,” International Journal of Biochemistry & Cell Biology, vol. 36, no. 6, pp. 981–985, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Kuno, Y. Okada, H. Kawashima et al., “ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan,” FEBS Letters, vol. 478, no. 3, pp. 241–245, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. R. P. Somerville, J.-M. Longpre, K. A. Jungers et al., “Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1,” The Journal of Biological Chemistry, vol. 278, no. 11, pp. 9503–9513, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. L. A. Collins-Racie, C. R. Flannery, W. Zeng et al., “ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage,” Matrix Biology, vol. 23, no. 4, pp. 219–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. W. Zeng, C. Corcoran, L. A. Collins-Racie, E. R. LaVallie, E. A. Morris, and C. R. Flannery, “Glycosaminoglycan-binding properties and aggrecanase activities of truncated ADAMTSs: comparative analyses with ADAMTS-5, -9, -16 and -18,” Biochimica et Biophysica Acta, vol. 1760, no. 3, pp. 517–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Gendron, M. Kashiwagi, N. H. Lim et al., “Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4,” Journal of Biological Chemistry, vol. 282, no. 25, pp. 18294–18306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Fushimi, L. Troeberg, H. Nakamura, N. H. Lim, and H. Nagase, “Functional differences of the catalytic and non-catalytic domains in human ADAMTS-4 and ADAMTS-5 in aggrecanolytic activity,” Journal of Biological Chemistry, vol. 283, no. 11, pp. 6706–6716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. W. Lark, E. K. Bayne, J. Flanagan et al., “Aggrecan degradation in human cartilage: evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints,” Journal of Clinical Investigation, vol. 100, no. 1, pp. 93–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. L. I. Melching, W. D. Fisher, E. R. Lee, J. S. Mort, and P. J. Roughley, “The cleavage of biglycan by aggrecanases,” Osteoarthritis and Cartilage, vol. 14, no. 11, pp. 1147–1154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. T. Konttinen, J. Mandelin, T. F. Li et al., “Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis,” Arthritis and Rheumatism, vol. 46, no. 4, pp. 953–960, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Filou, M. Stylianou, I. E. Triantaphyllidou et al., “Expression and distribution of aggrecanases in human larynx: ADAMTS-5/aggrecanase-2 is the main aggrecanase in laryngeal carcinoma,” Biochimie, vol. 95, no. 4, pp. 725–734, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. E. L. Rosenthal and L. M. Matrisian, “Matrix metalloproteases in head and neck cancer,” Head & Neck, vol. 28, no. 7, pp. 639–648, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. B. Csoka, G. I. Frost, and R. Stern, “The six hyaluronidase-like genes in the human and mouse genomes,” Matrix Biology, vol. 20, no. 8, pp. 499–508, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Kaneiwa, S. Mizumoto, K. Sugahara, and S. Yamada, “Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence,” Glycobiology, vol. 20, no. 3, pp. 300–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. M. F. Coutinho, L. Lacerda, and S. Alves, “Glycosaminoglycan storage disorders: a review,” Biochemistry Research International, vol. 2012, Article ID 471325, 16 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus