Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 468375, 10 pages
Research Article

Genetic Analysis of Diversity within a Chinese Local Sugarcane Germplasm Based on Start Codon Targeted Polymorphism

1Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/Fujian Agriculture and Forestry University, Fuzhou 350002, China
2USDA-ARS, Sugarcane Research Laboratory, Houma, LA 70360, USA

Received 4 November 2013; Revised 14 December 2013; Accepted 3 January 2014; Published 24 March 2014

Academic Editor: Guihua H. Bai

Copyright © 2014 Youxiong Que et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In-depth information on sugarcane germplasm is the basis for its conservation and utilization. Data on sugarcane molecular markers are limited for the Chinese sugarcane germplasm collections. In the present study, 20 start codon targeted (SCoT) marker primers were designed to assess the genetic diversity among 107 sugarcane accessions within a local sugarcane germplasm collection. These primers amplified 176 DNA fragments, of which 163 were polymorphic (92.85%). Polymorphic information content (PIC) values ranged from 0.783 to 0.907 with a mean of 0.861. Unweighted pair group method of arithmetic averages (UPGMA) cluster analysis of the SCoT marker data divided the 107 sugarcane accessions into six clusters at 0.674 genetic similarity coefficient level. Relatively abundant genetic diversity was observed among ROC22, ROC16, and ROC10, which occupied about 80% of the total sugarcane acreage in China, indicating their potential breeding value on Mainland China. Principal component analysis (PCA) partitioned the 107 sugarcane accessions into two major groups, the Domestic Group and the Foreign Introduction Group. Each group was further divided based on institutions, where the sugarcane accessions were originally developed. The knowledge of genetic diversity among the local sugarcane germplasm provided foundation data for managing sugarcane germplasm, including construction of a core collection and regional variety distribution and subrogation.