Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 469103, 9 pages
http://dx.doi.org/10.1155/2014/469103
Research Article

Combined Analysis with Copy Number Variation Identifies Risk Loci in Lung Cancer

1Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
2Chinese National Human Genome Center at Shanghai, Shanghai 201203, China
3Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
4State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University, 197 Ruijin Road II, Shanghai 200025, China

Received 21 May 2014; Revised 11 June 2014; Accepted 11 June 2014; Published 1 July 2014

Academic Editor: Tao Huang

Copyright © 2014 Xinlei Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. I. Amos, X. Wu, P. Broderick et al., “Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1,” Nature Genetics, vol. 40, no. 5, pp. 616–622, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Hung, J. D. McKay, V. Gaborieau et al., “A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25,” Nature, vol. 452, pp. 633–637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. T. Landi, N. Chatterjee, K. Yu et al., “A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma,” The American Journal of Human Genetics, vol. 85, no. 5, pp. 679–691, 2009. View at Publisher · View at Google Scholar
  5. J. D. McKay, R. J. Hung, V. Gaborieau et al., “Lung cancer susceptibility locus at 5p15.33,” Nature Genetics, vol. 40, no. 12, pp. 1404–1406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. T. E. Thorgeirsson, F. Geller, P. Sulem et al., “A variant associated with nicotine dependence, lung cancer and peripheral arterial disease,” Nature, vol. 452, no. 7187, pp. 638–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Wang, P. Broderick, E. Webb et al., “Common 5p15.33 and 6p21.33 variants influence lung cancer risk,” Nature Genetics, vol. 40, no. 12, pp. 1407–1409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Redon, S. Ishikawa, K. R. Fitch et al., “Global variation in copy number in the human genome,” Nature, vol. 444, no. 7118, pp. 444–454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Stankiewicz and J. R. Lupski, “Genome architecture, rearrangements and genomic disorders,” Trends in Genetics, vol. 18, no. 2, pp. 74–82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. J. Shaw and J. R. Lupski, “Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease,” Human Molecular Genetics, vol. 13, no. 1, pp. R57–R64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. Diskin, C. Hou, J. T. Glessner et al., “Copy number variation at 1q21.1 associated with neuroblastoma,” Nature, vol. 459, no. 7249, pp. 987–991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Vauhkonen, M. Vauhkonen, A. Sajantila, P. Sipponen, and S. Knuutila, “DNA copy number aberrations in intestinal-type gastric cancer revealed by array-based comparative genomic hybridization,” Cancer Genetics and Cytogenetics, vol. 167, no. 2, pp. 150–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. P. Kuiper, M. J. L. Ligtenberg, N. Hoogerbrugge, and A. Geurts van Kessel, “Germline copy number variation and cancer risk,” Current Opinion in Genetics and Development, vol. 20, no. 3, pp. 282–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Xu, J. L. Roos, S. Levy, E. J. van Rensburg, J. A. Gogos, and M. Karayiorgou, “Strong association of de novo copy number mutations with sporadic schizophrenia,” Nature Genetics, vol. 40, no. 7, pp. 880–885, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Gonzalez, H. Kulkarni, H. Bolivar et al., “The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility,” Science, vol. 307, no. 5714, pp. 1434–1440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. T. Landi, D. Consonni, M. Rotunno et al., “Environment and Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer,” BMC Public Health, vol. 8, article 203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. B. Hayes, A. Sigurdson, L. Moore et al., “Methods for etiologic and early marker investigations in the PLCO trial,” Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis, vol. 592, no. 1-2, pp. 147–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Chen, X. Li, P. Wang et al., “Novel association strategy with copy number variation for identifying new risk loci of human diseases,” PLoS ONE, vol. 5, no. 8, Article ID e12185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Dudbridge, A. Gusnanto, and B. P. C. Koeleman, “Detecting multiple associations in genome-wide studies,” Human Genomics, vol. 2, no. 5, pp. 310–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. García-Closas and J. H. Lubin, “Power and sample size calculations in case-control studies of gene-environment interactions: comments on different approaches,” The American Journal of Epidemiology, vol. 149, no. 8, pp. 689–692, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Freedman, D. Reich, K. L. Penney et al., “Assessing the impact of population stratification on genetic association studies,” Nature Genetics, vol. 36, no. 4, pp. 388–393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Tian, P. K. Gregersen, and M. F. Seldin, “Accounting for ancestry: population substructure and genome-wide association studies,” Human Molecular Genetics, vol. 17, no. 2, pp. R143–R150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. I. Lerman and J. D. Minna, “The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes,” Cancer Research, vol. 60, no. 21, pp. 6116–6133, 2000. View at Google Scholar · View at Scopus
  24. E. A. Anedchenko, A. A. Dmitriev, G. S. Krasnov et al., “Down-regulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1 and HYAL2 genes in non-small cell lung cancer,” Molekuliarnaia Biologiia, vol. 42, no. 6, pp. 965–976, 2008. View at Google Scholar · View at Scopus
  25. M. C. Boelens, K. Kok, P. van der Vlies et al., “Genomic aberrations in squamous cell lung carcinoma related to lymph node or distant metastasis,” Lung Cancer, vol. 66, no. 3, pp. 372–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Haruki, I. Imoto, K. Kozaki et al., “Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous cell carcinoma,” Carcinogenesis, vol. 31, no. 6, pp. 1027–1036, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. E. Gylfe, J. Sirkia, M. Ahlsten et al., “Somatic mutations and germline sequence variants in patients with familial colorectal cancer,” International Journal of Cancer, vol. 127, no. 12, pp. 2974–2980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Floris, S. Rassu, L. Boccone, D. Gasperini, A. Cao, and L. Crisponi, “Two patients with balanced translocations and autistic disorder: CSMD3 as a candidate gene for autism found in their common 8q23 breakpoint area,” European Journal of Human Genetics, vol. 16, no. 6, pp. 696–704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Zayed, R. Chao, A. Moshrefi et al., “A maternally inherited chromosome 18q22.1 deletion in a male with late-presenting diaphragmatic hernia and microphthalmia—evaluation of DSEL as a candidate gene for the diaphragmatic defect,” The American Journal of Medical Genetics A, vol. 152, no. 4, pp. 916–923, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Kettunen, W. El-Rifai, A. Björkqvist et al., “A broad amplification pattern at 3q in squamous cell lung cancer—a fluorescence in situ hybridization study,” Cancer Genetics and Cytogenetics, vol. 117, no. 1, pp. 66–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Pei, B. R. Balsara, W. Li et al., “Genomic imbalances in human lung adenocarcinomas and squamous cell carcinomas,” Genes Chromosomes and Cancer, vol. 31, no. 3, pp. 282–287, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Qian and P. P. Massion, “Role of chromosome 3q amplification in lung cancer,” Journal of Thoracic Oncology, vol. 3, no. 3, pp. 212–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. A. Cooper, V. J. Bubb, N. Smithson et al., “Loss of heterozygosity at 5q21 in non-small cell lung cancer: a frequent event but without evidence of apc mutation,” The Journal of Pathology, vol. 180, pp. 33–37, 1996. View at Google Scholar
  34. Y. Korenaga, H. Matsuyama, H. Hirata et al., “Smoking may cause genetic alterations at 5q22.2~q23.1 in clear-cell renal cell carcinoma,” Cancer Genetics and Cytogenetics, vol. 163, no. 1, pp. 7–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Yamada, K. Yanagisawa, S. Tokumaru et al., “Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer,” Genes Chromosomes and Cancer, vol. 47, no. 9, pp. 810–818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Purcell, B. Neale, K. Todd-Brown et al., “PLINK: a tool set for whole-genome association and population-based linkage analyses,” American Journal of Human Genetics, vol. 81, no. 3, pp. 559–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich, “Principal components analysis corrects for stratification in genome-wide association studies,” Nature Genetics, vol. 38, no. 8, pp. 904–909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. C. C. Spencer, Z. Su, P. Donnelly, and J. Marchini, “Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip,” PLoS Genetics, vol. 5, no. 5, Article ID e1000477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus