Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 485620, 8 pages
http://dx.doi.org/10.1155/2014/485620
Research Article

Mass Spectrometry and Multiplex Antigen Assays to Assess Microbial Quality and Toxin Production of Staphylococcus aureus Strains Isolated from Clinical and Food Samples

1Laboratoire de Biotechnologie et Microbiologie des Aliments, Faculté des Sciences et Technologies des Aliments, Université Nangui Abroguoua, BP 801 Abidjan 02, Cote D’Ivoire
2Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 05 BP 1604 Cotonou, Benin
3Laboratoire de Bactériologie et Virologie, Faculté des Sciences Médicales, Centre Hospitalier et Universitaire de Treichville, BP V3 Abidjan, Cote D’Ivoire
4Université de Strasbourg (CHRU Strasbourg), Fédération de Médecine Translationnelle de Strasbourg, EA 7290 Virulence Bactérienne Précoce, Institut de Bactériologie, 3 rue Koeberlé, 67000 Strasbourg, France
5Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 315 Penn Street, Camden, NJ 08102, USA

Received 8 February 2014; Revised 27 April 2014; Accepted 12 May 2014; Published 29 May 2014

Academic Editor: Himanshu Garg

Copyright © 2014 Paul Attien et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of our study was to investigate the microbial quality of meat products and on some clinical samples in Abidjan focused on Staphylococcus genus and the toxin production profile of Staphylococcus aureus (S. aureus) isolated. Bacteria were collected from 240 samples of three meat products sold in Abidjan and 180 samples issued from clinical infections. The strains were identified by both microbiological and MALDI-TOF-MS methods. The susceptibility to antibiotics was determined by the disc diffusion method. The production of Panton-Valentine Leukocidin, LukE/D, and epidermolysins was screened using radial gel immunodiffusion. The production of staphylococcal enterotoxins and TSST-1 was screened by a Bio-Plex Assay. We observed that 96/240 of meat samples and 32/180 of clinical samples were contaminated by Staphylococcus. Eleven species were isolated from meats and 4 from clinical samples. Forty-two S. aureus strains were isolated from ours samples. Variability of resistance was observed for most of the tested antibiotics but none of the strains displays a resistance to imipenem and quinolones. We observed that 89% of clinical S. aureus were resistant to methicillin against 58% for those issued from meat products. All S. aureus isolates issued from meat products produce epidermolysins whereas none of the clinical strains produced these toxins. The enterotoxins were variably produced by both clinical and meat product samples.