Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 487535, 8 pages
http://dx.doi.org/10.1155/2014/487535
Research Article

Strontium Promotes Cementoblasts Differentiation through Inhibiting Sclerostin Expression In Vitro

1Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun, Jilin 130021, China
2Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun 130021, China

Received 2 January 2014; Revised 13 March 2014; Accepted 12 April 2014; Published 9 June 2014

Academic Editor: Kunikazu Tsuji

Copyright © 2014 Xingfu Bao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. D. Bosshardt and K. A. Selvig, “Dental cementum: the dynamic tissue covering of the root,” Periodontology 2000, vol. 14, no. 1, pp. 41–75, 1997. View at Google Scholar · View at Scopus
  2. A. Nanci and D. D. Bosshardt, “Structure of periodontal tissues in health and disease,” Periodontology 2000, vol. 40, no. 1, pp. 11–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. D. Bosshardt, “Are cementoblasts a subpopulation of osteoblasts or a unique phenotype?” Journal of Dental Research, vol. 84, no. 5, pp. 390–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Artzi, N. Wasersprung, M. Weinreb, M. Steigmann, H. S. Prasad, and I. Tsesis, “Effect of suided tissue regeneration on newly formed Bone and cementum in periapical tissue healing after endodontic surgery: an in vivo study in the cat,” Journal of Endodontics, vol. 38, no. 2, pp. 163–169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. D. W. K. Kao and J. P. Fiorellini, “Regenerative periodontal therapy,” Frontiers of Oral Biology, vol. 15, pp. 149–159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-H. Lee, J. D. Lin, J. I. Fong, M. I. Ryder, and S. P. Ho, “The adaptive nature of the bone-periodontal ligament-cementum complex in a ligature-induced periodontitis rat model,” BioMed Research International, vol. 2013, Article ID 876316, 17 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Brezniak and A. Wasserstein, “Orthodontically induced inflammatory root resorption. Part II: the clinical aspects,” Angle Orthodontist, vol. 72, no. 2, pp. 180–184, 2002. View at Google Scholar · View at Scopus
  8. N. Brezniak and A. Wasserstein, “Orthodontically induced inflammatory root resorption. Part I: the basic science aspects,” Angle Orthodontist, vol. 72, no. 2, pp. 175–179, 2002. View at Google Scholar · View at Scopus
  9. A. Jäger, D. Kunert, T. Friesen, D. Zhang, S. Lossdörfer, and W. Götz, “Cellular and extracellular factors in early root resorption repair in the rat,” European Journal of Orthodontics, vol. 30, no. 4, pp. 336–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Owman-Moll, J. Kurol, and D. Lundgren, “Repair of orthodontically induced root resorption in adolescents,” The Angle orthodontist, vol. 65, no. 6, pp. 403–410, 1995. View at Google Scholar · View at Scopus
  11. E. B. Rego, T. Inubushi, A. Kawazoe et al., “Effect of PGE2 induced by compressive and tensile stresses on cementoblast differentiation in vitro,” Archives of Oral Biology, vol. 56, no. 11, pp. 1238–1246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. S. Hakki, B. L. Foster, K. J. Nagatomo et al., “Bone morphogenetic protein-7 enhances cementoblast function in vitro,” Journal of Periodontology, vol. 81, no. 11, pp. 1663–1674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Bao, M. Hu, Y. Zhang et al., “Effect of fangchinoline on root resorption during rat orthodontic tooth movement,” Korean Journal of Orthodontics, vol. 42, no. 3, pp. 138–143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Das and J. C. Crockett, “Osteoporosis—a current view of pharmacological prevention and treatment,” Drug Design, Development and Therapy, vol. 7, pp. 435–448, 2013. View at Google Scholar
  15. Y. Wu, S. M. Adeeb, M. John Duke, D. Munoz-Paniagua, and M. R. Doschak, “Compositional and material properties of rat bone after bisphosphonate and/or strontium ranelate drug treatment,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 16, no. 1, pp. 52–64, 2013. View at Google Scholar · View at Scopus
  16. Y. Li, J. Li, S. Zhu et al., “Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells,” Biochemical and Biophysical Research Communications, vol. 418, no. 4, pp. 725–730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Querido and M. Farina, “Strontium ranelate increases the formation of bone-like mineralized nodules in osteoblast cell cultures and leads to Sr incorporation into the intact nodules,” Cell and Tissue Research, vol. 354, no. 2, pp. 573–580, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Saidak and P. J. Marie, “Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis,” Pharmacology and Therapeutics, vol. 136, no. 2, pp. 216–226, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Wu, Y. Zhou, C. Lin, J. Chang, and Y. Xiao, “Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering,” Acta Biomaterialia, vol. 8, no. 10, pp. 3805–3815, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Baier, P. Staudt, R. Klein et al., “Strontium enhances osseointegration of calcium phosphate cement: a histomorphometric pilot study in ovariectomized rats,” Journal of Orthopaedic Surgery and Research, vol. 8, no. 1, article 16, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. X.-F. Huang and Y. Chai, “Molecular regulatory mechanism of tooth root development,” International Journal of Oral Science, vol. 4, no. 4, pp. 177–181, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Schrooten, G. J. S. Behets, W. E. Cabrera et al., “Dose-dependent effects of strontium on bone of chronic renal failure rats,” Kidney International, vol. 63, no. 3, pp. 927–935, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. C. Verberckmoes, M. E. De Broe, and P. C. D'Haese, “Dose-dependent effects of strontium on osteoblast function and mineralization,” Kidney International, vol. 64, no. 2, pp. 534–543, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Römer, B. Desaga, P. Proff, A. Faltermeier, and C. Reicheneder, “Strontium promotes cell proliferation and suppresses IL-6 expression in human PDL cells,” Annals of Anatomy, vol. 194, no. 2, pp. 208–211, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. D. D. Bosshardt, S. Zalzal, M. D. McKee et al., “Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum,” Anatomical Record, vol. 250, no. 1, pp. 13–33, 1998. View at Google Scholar
  26. S. S. Hakki, S. B. Bozkurt, E. E. Hakki, and S. Belli, “Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts,” Journal of Endodontics, vol. 35, no. 4, pp. 513–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Moester, S. E. Papapoulos, C. W. Löwik, and R. L. van Bezooijen, “Sclerostin: current knowledge and future perspectives,” Calcified Tissue International, vol. 87, no. 2, pp. 99–107, 2010. View at Google Scholar · View at Scopus
  28. A. Jäger, W. Götz, S. Lossdörfer, and B. Rath-Deschner, “Localization of SOST/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro,” Journal of Periodontal Research, vol. 45, no. 2, pp. 246–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Bao, Y. Liu, G. Han et al., “The effect on proliferation and differentiation of cementoblast by using sclerostin as inhibitor,” International Journal of Molecular Sciences, vol. 14, no. 10, pp. 21140–21152, 2013. View at Publisher · View at Google Scholar