Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 503634, 12 pages
http://dx.doi.org/10.1155/2014/503634
Review Article

Noncoding RNAs: Emerging Players in Muscular Dystrophies

1Institute of Cell Biology and Neurobiology, National Research Council, 00015 Monterotondo Scalo, Italy
2Policlinico San Donato-IRCCS, Molecular Cardiology Laboratory, 20097 San Donato Milanese, Milan , Italy

Received 5 December 2013; Accepted 17 January 2014; Published 4 March 2014

Academic Editor: Akinori Nakamura

Copyright © 2014 Germana Falcone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, “Many roads to maturity: microRNA biogenesis pathways and their regulation,” Nature Cell Biology, vol. 11, no. 3, pp. 228–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Krol, I. Loedige, and W. Filipowicz, “The widespread regulation of microRNA biogenesis, function and decay,” Nature Reviews Genetics, vol. 11, no. 9, pp. 597–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. E. Pasquinelli, “MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship,” Nature Reviews Genetics, vol. 13, no. 4, pp. 271–282, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates microRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, “Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs,” Genes and Development, vol. 17, no. 24, pp. 3011–3016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear export of microRNA precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. A. Rand, S. Petersen, F. Du, and X. Wang, “Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation,” Cell, vol. 123, no. 4, pp. 621–629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Diederichs and D. A. Haber, “Dual role for argonautes in microRNA processing and Posttranscriptional regulation of microRNA expression,” Cell, vol. 131, no. 6, pp. 1097–1108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Czech and G. J. Hannon, “Small RNA sorting: matchmaking for argonautes,” Nature Reviews Genetics, vol. 12, no. 1, pp. 19–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Huntzinger and E. Izaurralde, “Gene silencing by microRNAs: contributions of translational repression and mRNA decay,” Nature Reviews Genetics, vol. 12, no. 2, pp. 99–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. R. Fabian and N. Sonenberg, “The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC,” Nature Structural & Molecular Biology, vol. 19, no. 6, pp. 586–593, 2012. View at Google Scholar
  13. H. A. Meijer, Y. W. Kong, W. T. Lu et al., “Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation,” Science, vol. 340, no. 6128, pp. 82–85, 2013. View at Publisher · View at Google Scholar
  14. N. Rajewsky, “MicroRNA target predictions in animals,” Nature Genetics, vol. 38, no. 1, pp. S8–S13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Rinn and H. Y. Chang, “Genome regulation by long noncoding RNAs,” Annual Review of Biochemistry, vol. 81, pp. 145–166, 2012. View at Publisher · View at Google Scholar
  16. S. Djebali, C. A. Davis, A. Merkel et al., “Landscape of transcription in human cells,” Nature, vol. 489, no. 7414, pp. 101–108, 2012. View at Publisher · View at Google Scholar
  17. T. R. Mercer, M. E. Dinger, and J. S. Mattick, “Long non-coding RNAs: insights into functions,” Nature Reviews Genetics, vol. 10, no. 3, pp. 155–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Guttman, M. Garber, J. Z. Levin et al., “Erratum: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs (Nat. Biotechnol. (2010) 28 (503-510)),” Nature Biotechnology, vol. 28, no. 7, p. 756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Cabili, C. Trapnell, L. Goff et al., “Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses,” Genes and Development, vol. 25, no. 18, pp. 1915–1927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Khalil, M. Guttman, M. Huarte et al., “Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 28, pp. 11667–11672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. K. C. Wang and H. Y. Chang, “Molecular mechanisms of long noncoding RNAs,” Molecular Cell, vol. 43, no. 6, pp. 904–914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Beltran, I. Puig, C. Peña et al., “A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition,” Genes and Development, vol. 22, no. 6, pp. 756–769, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Tripathi, J. D. Ellis, Z. Shen et al., “The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation,” Molecular Cell, vol. 39, no. 6, pp. 925–938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. S. Cabianca, V. Casa, and D. Gabellini, “A novel molecular mechanism in human genetic disease A DNA repeat-derived lncRNA,” RNA Biology, vol. 9, no. 10, pp. 1211–1217, 2012. View at Publisher · View at Google Scholar
  25. U. A. Ørom and R. Shiekhattar, “Noncoding RNAs and enhancers: complications of a long-distance relationship,” Trends in Genetics, vol. 27, no. 10, pp. 433–439, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Mousavi, H. Zare, S. Dell'orso et al., “eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci,” Molecular Cell, vol. 51, no. 5, pp. 606–617, 2013. View at Publisher · View at Google Scholar
  27. L. Salmena, L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi, “A ceRNA hypothesis: the rosetta stone of a hidden RNA language?” Cell, vol. 146, no. 3, pp. 353–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Cesana, D. Cacchiarelli, I. Legnini et al., “Erratum: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA (Cell (2011) 147 (358–369)),” Cell, vol. 147, no. 4, p. 947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. S. Alexander, G. Kawahara, N. Motohashi et al., “MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation,” Cell Death and Differentiation, vol. 20, no. 9, pp. 1194–1208, 2013. View at Publisher · View at Google Scholar
  30. I. Eisenberg, A. Eran, I. Nishino et al., “Distinctive patterns of microRNA expression in primary muscular disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17016–17021, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. J. McCarthy, K. A. Esser, and F. H. Andrade, “MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse,” The American Journal of Physiology—Cell Physiology, vol. 293, no. 1, pp. C451–C457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Yuasa, Y. Hagiwara, M. Ando, A. Nakamura, S. Takeda, and T. Hijikata, “MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy,” Cell Structure and Function, vol. 33, no. 2, pp. 163–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Greco, M. De Simone, C. Colussi et al., “Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia,” The FASEB Journal, vol. 23, no. 10, pp. 3335–3346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. S. Alexander, J. C. Casar, N. Motohashi et al., “Regulation of DMD pathology by an ankyrin-encoded miRNA,” Skelet Muscle, vol. 1, article 27, 2011. View at Publisher · View at Google Scholar
  35. V. de Arcangelis, F. Serra, C. Cogoni, E. Vivarelli, L. Monaco, and F. Naro, “β1-syntrophin modulation by miR-222 in mdx mice,” PLoS ONE, vol. 5, no. 8, Article ID e12098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Cacchiarelli, T. Incitti, J. Martone et al., “MiR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy,” EMBO Reports, vol. 12, no. 2, pp. 136–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Rau, F. Freyermuth, C. Fugier et al., “Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy,” Nature Structural and Molecular Biology, vol. 18, no. 7, pp. 840–845, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Gambardella, F. Rinaldi, S. M. Lepore et al., “Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients,” Journal of Translational Medicine, vol. 8, article 48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Perbellini, S. Greco, G. Sarra-Ferraris et al., “Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1,” Neuromuscular Disorders, vol. 21, no. 2, pp. 81–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. M. Fernandez-Costa, A. Garcia-Lopez, S. Zuniga et al., “Expanded CTG repeats trigger miRNA alterations in Drosophila that are conserved in myotonic dystrophy type 1 patients,” Human Molecular Genetics, vol. 22, no. 4, pp. 704–716, 2013. View at Publisher · View at Google Scholar
  41. S. Greco, A. Perfetti, P. Fasanaro et al., “Deregulated microRNAs in myotonic dystrophy type 2,” PloS ONE, vol. 7, no. 6, Article ID e39732, 2012. View at Google Scholar
  42. P. Dmitriev, L. Stankevicins, E. Ansseau et al., “Defective regulation of microRNA target genes in myoblasts from facioscapulohumeral dystrophy patients,” Journal of Biological Chemistry, vol. 288, no. 49, 2013. View at Publisher · View at Google Scholar
  43. H. Mizuno, A. Nakamura, Y. Aoki et al., “Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy,” PLoS ONE, vol. 6, no. 3, Article ID e18388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Vignier, F. Amor, P. Fogel et al., “Distinctive serum miRNA profile in mouse models of striated muscular pathologies,” PloS ONE, vol. 8, no. 2, Article ID e55281, 2013. View at Google Scholar
  45. M. Buckingham and S. D. Vincent, “Distinct and dynamic myogenic populations in the vertebrate embryo,” Current Opinion in Genetics and Development, vol. 19, no. 5, pp. 444–453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. J. Carvajal and P. W. J. Rigby, “Regulation of gene expression in vertebrate skeletal muscle,” Experimental Cell Research, vol. 316, no. 18, pp. 3014–3018, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. R. O'Rourke, S. A. Georges, H. R. Seay et al., “Essential role for Dicer during skeletal muscle development,” Developmental Biology, vol. 311, no. 2, pp. 359–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, and T. Tuschl, “Identification of tissue-specific microRNAs from mouse,” Current Biology, vol. 12, no. 9, pp. 735–739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Zhao, E. Samal, and D. Srivastava, “Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis,” Nature, vol. 436, no. 7048, pp. 214–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. N. S. Sokol and V. Ambros, “Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth,” Genes and Development, vol. 19, no. 19, pp. 2343–2354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. D. J. Simon, J. M. Madison, A. L. Conery et al., “The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions,” Cell, vol. 133, no. 5, pp. 903–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Anderson, H. Catoe, and R. Werner, “MIR-206 regulates connexin43 expression during skeletal muscle development,” Nucleic Acids Research, vol. 34, no. 20, pp. 5863–5871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. J.-F. Chen, E. M. Mandel, J. M. Thomson et al., “The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation,” Nature Genetics, vol. 38, no. 2, pp. 228–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. K. K. Hak, S. L. Yong, U. Sivaprasad, A. Malhotra, and A. Dutta, “Muscle-specific microRNA miR-206 promotes muscle differentiation,” Journal of Cell Biology, vol. 174, no. 5, pp. 677–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. M. I. Rosenberg, S. A. Georges, A. Asawachaicharn, E. Analau, and S. J. Tapscott, “MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206,” Journal of Cell Biology, vol. 175, no. 1, pp. 77–85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Wienholds, W. P. Kloosterman, E. Miska et al., “MicroRNA expression in zebrafish embryonic development,” Mechanisms of Development, vol. 122, pp. S149–S150, 2005. View at Google Scholar
  57. D. Sweetman, T. Rathjen, M. Jefferson et al., “Erratum: FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos (Developmental Dynamics 235 (2185-2191)),” Developmental Dynamics, vol. 235, no. 10, p. 2905, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. P. K. Rao, R. M. Kumar, M. Farkhondeh, S. Baskerville, and H. F. Lodish, “Myogenic factors that regulate expression of muscle-specific microRNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 23, pp. 8721–8726, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Sweetman, K. Goljanek, T. Rathjen et al., “Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133,” Developmental Biology, vol. 321, no. 2, pp. 491–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Alteri, F. De Vito, G. Messina et al., “Cyclin D1 is a major target of miR-206 in cell differentiation and transformation,” Cell Cycle, vol. 12, no. 24, 2013. View at Google Scholar
  61. H. Hirai, M. Verma, S. Watanabe, C. Tastad, Y. Asakura, and A. Asakura, “MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3,” Journal of Cell Biology, vol. 191, no. 2, pp. 347–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. J.-F. Chen, Y. Tao, J. Li et al., “microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7,” Journal of Cell Biology, vol. 190, no. 5, pp. 867–879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. B. K. Dey, J. Gagan, and A. Dutta, “miR-206 and -486 induce myoblast differentiation by downregulating Pax7 (Molecular and Cellular Biology (2010) 31, 1, (203-214)),” Molecular and Cellular Biology, vol. 31, no. 6, p. 1329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Elia, R. Contu, M. Quintavalle et al., “Reciprocal regulation of microrna-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions,” Circulation, vol. 120, no. 23, pp. 2377–2385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. E. van Rooij, D. Quiat, B. A. Johnson et al., “A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance,” Developmental Cell, vol. 17, no. 5, pp. 662–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. C. G. Crist, D. Montarras, G. Pallafacchina et al., “Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13383–13387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. B. K. Dey, J. Gagan, Z. Yan, and A. Dutta, “miR-26a is required for skeletal muscle differentiation and regeneration in mice,” Genes & Development, vol. 26, no. 19, pp. 2180–2191, 2012. View at Google Scholar
  68. F. Sun, J. Wang, Q. Pan et al., “Characterization of function and regulation of miR-24-1 and miR-31,” Biochemical and Biophysical Research Communications, vol. 380, no. 3, pp. 660–665, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. C. E. Winbanks, B. Wang, C. Beyer et al., “TGF-β regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4,” Journal of Biological Chemistry, vol. 286, no. 16, pp. 13805–13814, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Cardinalli, L. Castellani, P. Fasanaro et al., “Microrna-221 and microRNA-222 modulate differentiation and maturation of skeletal muscle cells,” PLoS ONE, vol. 4, no. 10, Article ID e7607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Ge, Y. Sun, and J. Chen, “IGF-II is regulated by microRNA-125b in skeletal myogenesis,” Journal of Cell Biology, vol. 192, no. 1, pp. 69–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Naguibneva, M. Ameyar-Zazoua, A. Polesskaya et al., “The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation,” Nature Cell Biology, vol. 8, no. 3, pp. 278–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Gagan, B. K. Dey, R. Layer, Z. Yan, and A. Dutta, “MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation,” Journal of Biological Chemistry, vol. 286, no. 22, pp. 19431–19438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. A. H. Juan, R. M. Kumar, J. G. Marx, R. A. Young, and V. Sartorelli, “Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells,” Molecular Cell, vol. 36, no. 1, pp. 61–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Liu, X.-J. Luo, A.-W. Xiong et al., “MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras,” Journal of Biological Chemistry, vol. 285, no. 34, pp. 26599–26607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. W. Wei, H. B. He, W. Y. Zhang et al., “miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development,” Cell Death & Disease, vol. 4, 2013. View at Google Scholar
  77. A. E. H. Emery, “Muscular dystrophy into the new millennium,” Neuromuscular Disorders, vol. 12, no. 4, pp. 343–349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. A. P. Monaco, R. L. Neve, and C. Colletti-Feener, “Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene,” Nature, vol. 323, no. 6089, pp. 646–650, 1986. View at Google Scholar · View at Scopus
  79. A. H. M. Burghes, C. Logan, X. Hu, B. Belfall, R. G. Worton, and P. N. Ray, “A cDNA clone from the Duchenne/Becker muscular dystrophy gene,” Nature, vol. 328, no. 6129, pp. 434–437, 1987. View at Google Scholar · View at Scopus
  80. E. P. Hoffman, R. H. Brown Jr., and L. M. Kunkel, “Dystrophin: the protein product of the Duchenne muscular dystrophy locus,” Cell, vol. 51, no. 6, pp. 919–928, 1987. View at Google Scholar · View at Scopus
  81. M. Koening, E. P. Hoffman, C. J. Bertelson, A. P. Monaco, C. Feener, and L. M. Kunkel, “Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals,” Cell, vol. 50, no. 3, pp. 509–517, 1987. View at Google Scholar · View at Scopus
  82. E. P. Hoffman, K. H. Fischbeck, R. H. Brown et al., “Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy,” The New England Journal of Medicine, vol. 318, no. 21, pp. 1363–1368, 1988. View at Google Scholar · View at Scopus
  83. M. Koening, A. H. Beggs, M. Moyer et al., “The molecular basis for Duchenne versus becker muscular dystrophy: correlation of severity with type of deletion,” The American Journal of Human Genetics, vol. 45, no. 4, pp. 498–506, 1989. View at Google Scholar · View at Scopus
  84. S. Twayana, I. Legnini, M. Cesana, D. Cacchiarelli, M. Morlando, and I. Bozzoni, “Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy,” Biochemical Society Transactions, vol. 41, pp. 844–849, 2013. View at Publisher · View at Google Scholar
  85. B. Udd and R. Krahe, “The myotonic dystrophies: molecular, clinical, and therapeutic challenges,” The Lancet Neurology, vol. 11, no. 10, pp. 891–905, 2012. View at Publisher · View at Google Scholar
  86. A. Mankodi, E. Logigian, L. Callahan et al., “Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat,” Science, vol. 289, no. 5485, pp. 1769–1772, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Garcia-Lopez, L. Monferrer, I. Garcia-Alcover, M. Vicente-Crespo, M. C. Alvarez-Abril, and R. D. Artero, “Genetic and chemical modifiers of a CUG toxicity model in Drosophila,” PLoS ONE, vol. 3, no. 2, Article ID e1595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. K.-Y. Chen, H. Pan, M.-J. Lin et al., “Length-dependent toxicity of untranslated CUG repeats on Caenorhabditis elegans,” Biochemical and Biophysical Research Communications, vol. 352, no. 3, pp. 774–779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Du, M. S. Cline, R. J. Osborne et al., “Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy,” Nature Structural and Molecular Biology, vol. 17, no. 2, pp. 187–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Jiang, A. Mankodi, M. S. Swanson, R. T. Moxley, and C. A. Thornton, “Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons,” Human Molecular Genetics, vol. 13, no. 24, pp. 3079–3088, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. R. N. Kanadia, K. A. Johnstone, A. Mankodi et al., “A muscleblind knockout model for myotonic dystrophy,” Science, vol. 302, no. 5652, pp. 1978–1980, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Krol, A. Fiszer, A. Mykowska, K. Sobczak, M. de Mezer, and W. J. Krzyzosiak, “Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets,” Molecular Cell, vol. 25, no. 4, pp. 575–586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Bañez-Coronel, S. Porta, B. Kagerbauer et al., “A pathogenic mechanism in huntington's disease involves small CAG-repeated RNAs with neurotoxic activity,” PLoS Genetics, vol. 8, no. 2, Article ID e1002481, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. L. Snider, A. Asawachaicharn, A. E. Tyler et al., “RNA transcripts, miRNA-sized fragments and proteins produced from D4Z4 units: New candidates for the pathophysiology of facioscapulohumeral dystrophy,” Human Molecular Genetics, vol. 18, no. 13, pp. 2414–2430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Cabianca, V. Casa, B. Bodega et al., “A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy,” Cell, vol. 149, no. 4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. V. Kowaljow, A. Marcowycz, E. Ansseau et al., “The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein,” Neuromuscular Disorders, vol. 17, no. 8, pp. 611–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. D. Bosnakovski, S. Lamb, T. Simsek et al., “DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation,” Experimental Neurology, vol. 214, no. 1, pp. 87–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. J. R. Mendell, R. T. Moxley, R. C. Griggs et al., “Randomized, double-blind six-month trial of prednisone in Duchenne's muscular dystrophy,” The New England Journal of Medicine, vol. 320, no. 24, pp. 1592–1597, 1989. View at Google Scholar · View at Scopus
  99. R. C. Griggs, R. T. Moxley III, J. R. Mendell et al., “Prednisone in Duchenne dystrophy: a randomized, controlled trial defining the time course and dose response,” Archives of Neurology, vol. 48, no. 4, pp. 383–388, 1991. View at Google Scholar · View at Scopus
  100. W. D. Biggar, V. A. Harris, L. Eliasoph, and B. Alman, “Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade,” Neuromuscular Disorders, vol. 16, no. 4, pp. 249–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. U. T. Ruegg, “Pharmacological prospects in the treatment of Duchenne muscular dystrophy,” Current Opinion in Neurology, vol. 26, no. 5, pp. 577–584, 2013. View at Publisher · View at Google Scholar
  102. D. G. Leung and K. R. Wagner, “Therapeutic advances in muscular dystrophy,” Annals of Neurology, vol. 74, no. 3, pp. 404–411, 2013. View at Google Scholar
  103. E. L. Logigian, W. B. Martens, R. T. Moxley et al., “Mexiletine is an effective antimyotonia treatment in myotonic dystrophy type 1,” Neurology, vol. 74, no. 18, pp. 1441–1448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Abdel-Hamid and P. R. Clemens, “Pharmacological therapies for muscular dystrophies,” Current Opinion in Neurology, vol. 25, no. 5, pp. 604–608, 2012. View at Publisher · View at Google Scholar
  105. W. J. Groh, M. R. Groh, C. Saha et al., “Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1,” The New England Journal of Medicine, vol. 358, no. 25, pp. 2688–2697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. R. Tawil, “Facioscapulohumeral muscular dystrophy,” Neurotherapeutics, vol. 5, no. 4, pp. 601–606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. S.-Y. Chen, Y. Wang, M. J. Telen, and J.-T. Chi, “The genomic analysis of erythrocyte microRNA expression in sickle cell diseases,” PLoS ONE, vol. 3, no. 6, Article ID e2360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Goljanek-Whysall, D. Sweetman, and A. E. Munsterberg, “MicroRNAs in skeletal muscle differentiation and disease,” Clinical Science, vol. 123, no. 11-12, pp. 611–625, 2012. View at Publisher · View at Google Scholar
  110. H. L. A. Janssen, H. W. Reesink, E. J. Lawitz et al., “Treatment of HCV infection by targeting microRNA,” The New England Journal of Medicine, vol. 368, no. 18, pp. 1685–1694, 2013. View at Publisher · View at Google Scholar
  111. B. L. Davidson and P. B. McCray, “Current prospects for RNA interference-based therapies,” Nature Reviews Genetics, vol. 12, no. 5, pp. 329–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. V. Wang and W. Wu, “MicroRNA-based therapeutics for cancer,” BioDrugs, vol. 23, no. 1, pp. 15–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. M. S. Ebert and P. A. Sharp, “Emerging roles for natural microRNA sponges,” Current Biology, vol. 20, no. 19, pp. R858–R861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. P. Liu and B. Berkhout, “MiRNA cassettes in viral vectors: problems and solutions,” Biochimica et Biophysica Acta, vol. 1809, no. 11-12, pp. 732–745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Gutschner, M. Hammerle, M. Eissmann et al., “The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells,” Cancer Research, vol. 73, no. 3, pp. 1180–1189, 2013. View at Publisher · View at Google Scholar
  116. W. Poller, J. Tank, C. Skurk, and M. Gast, “Cardiovascular RNA interference therapy: the broadening tool and target spectrum,” Circulation Research, vol. 113, no. 5, pp. 588–602, 2013. View at Publisher · View at Google Scholar
  117. N. Hauptman and D. Glavac, “MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer,” Radiology and Oncology, vol. 47, no. 4, pp. 311–318, 2013. View at Google Scholar
  118. C. H. Li and Y. C. Chen, “Targeting long non-coding RNAs in cancers: progress and prospects,” International Journal of Biochemistry & Cell Biology, vol. 45, no. 8, pp. 1895–1910, 2013. View at Google Scholar
  119. M. S. Weinberg and K. V. Morris, “Long non-coding RNA targeting and transcriptional de-repression,” Nucleic Acid Therapeutics, vol. 23, no. 1, pp. 9–14, 2013. View at Google Scholar
  120. J. Y. Ip and S. Nakagawa, “Long non-coding RNAs in nuclear bodies,” Development Growth and Differentiation, vol. 54, no. 1, pp. 44–54, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. S. A. M. Mulders, W. J. A. A. van den Broek, T. M. Wheeler et al., “Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13915–13920, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Sobczak, T. M. Wheeler, W. L. Wang, and C. A. Thornton, “RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy,” Molecular Therapy, vol. 21, no. 2, pp. 380–387, 2013. View at Google Scholar
  123. T. M. Wheeler, A. J. Leger, S. K. Pandey et al., “Targeting nuclear RNA for in vivo correction of myotonic dystrophy,” Nature, vol. 488, no. 7409, pp. 111–115, 2012. View at Publisher · View at Google Scholar