Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 503784, 9 pages
http://dx.doi.org/10.1155/2014/503784
Review Article

Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds

1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400 Selangor, Malaysia
2Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400 Selangor, Malaysia

Received 31 October 2013; Revised 30 December 2013; Accepted 30 December 2013; Published 17 February 2014

Academic Editor: Abdelwahab Omri

Copyright © 2014 K. T. Lim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. L. S. Duarte, S. J. A. Cardoso, and A. J. Alcada, “Emerging and innovative techniques for arsenic removal applied to a small water supply system,” Sustainability, vol. 1, pp. 1288–1304, 2009. View at Google Scholar
  2. B. K. Mandal and K. T. Suzuki, “Arsenic round the world: a review,” Talanta, vol. 58, no. 1, pp. 201–235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. B. P. Rosen, “Families of arsenic transporters,” Trends in Microbiology, vol. 7, no. 5, pp. 207–212, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. R. S. Oremland and J. F. Stolz, “Arsenic, microbes and contaminated aquifers,” Trends in Microbiology, vol. 13, no. 2, pp. 45–49, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. G. Sanders, “Arsenic cycling in marine systems,” Marine Environmental Research, vol. 3, no. 4, pp. 257–266, 1980. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Tareq, S. Safiullah, H. M. Anawar, M. M. Rahman, and T. Ishizuka, “Arsenic pollution in groundwater: a self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh,” Science of the Total Environment, vol. 313, no. 1–3, pp. 213–226, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zobrist, P. R. Dowdle, J. A. Davis, and R. S. Oremland, “Microbial arsenate reduction vs arsenate sorption: experiments with ferrihydrite suspensions,” Minerological Magazine A, vol. 62, pp. 1707–1708, 1998. View at Google Scholar
  8. R. A. Root, D. Vlassopoulos, N. A. Rivera, M. T. Rafferty, C. Andrews, and P. A. O'Day, “Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer,” Geochimica et Cosmochimica Acta, vol. 73, no. 19, pp. 5528–5553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. Saalfield and B. C. Bostick, “Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite,” Geochimica et Cosmochimica Acta, vol. 74, no. 18, pp. 5171–5186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Afkar, “Localization of the dissimilatory arsenate reductase in Sulfurospirillum barnesii strain SeS-3,” American Journal of Agriculture and Biological Sciences, vol. 7, pp. 97–105, 2012. View at Google Scholar
  11. J. F. Artiola, D. Zabcik, and S. H. Johnson, “In situ treatment of arsenic contaminated soil from a hazardous industrial site: laboratory studies,” Waste Management, vol. 10, no. 1, pp. 73–78, 1990. View at Google Scholar · View at Scopus
  12. S. Silver and L. T. Phung, “Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic,” Applied and Environmental Microbiology, vol. 71, no. 2, pp. 599–608, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Cervantes, G. Ji, J. L. Ramírez, and S. Silver, “Resistance to arsenic compounds in microorganisms,” FEMS Microbiology Reviews, vol. 15, no. 4, pp. 355–367, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Mahimairaja, N. S. Bolan, D. C. Adriano, and B. Robinson, “Arsenic contamination and its risk management in complex environmental settings,” Advances in Agronomy, vol. 86, pp. 1–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Sullivan, M. Tyrer, C. R. Cheeseman, and N. J. D. Graham, “Disposal of water treatment wastes containing arsenic—a review,” Science of the Total Environment, vol. 408, no. 8, pp. 1770–1778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Atteia, E. D. C. Estrada, and H. Bertin, “Soil flushing: a review of the origin of efficiency variability,” Review of Environment, Science and Biotechnology, vol. 12, pp. 379–389, 2013. View at Google Scholar
  17. M. Komárek, A. Vaněk, and V. Ettler, “Chemical stabilization of metals and arsenic in contaminated soils using oxides,” Environmental Pollution, vol. 172, pp. 9–22, 2013. View at Google Scholar
  18. N. C. Mueller and B. Nowack, “Nanoparticles for remediation: solving big problems with little particles,” Elements, vol. 6, no. 6, pp. 395–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K.-R. Kim, B.-T. Lee, and K.-W. Kim, “Arsenic stabilization in mine tailings using nano-sized magnetite and zero valent iron with the enhancement of mobility by surface coating,” Journal of Geochemical Exploration, vol. 113, pp. 124–129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. E. D. Leiva, C. D. P. Rámila, I. T. Vargas et al., “Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed,” Science of the Total Environment, vol. 466-467, pp. 490–502, 2014. View at Google Scholar
  21. E. K. Porter and P. J. Peterson, “Arsenic accumulation by plants on mine waste (United Kingdom),” Science of the Total Environment, vol. 4, no. 4, pp. 365–371, 1975. View at Publisher · View at Google Scholar · View at Scopus
  22. M. I. Silva Gonzaga, J. A. Gonzaga Santos, and L. Q. Ma, “Arsenic phytoextraction and hyperaccumulation by fern species,” Scientia Agricola, vol. 63, no. 1, pp. 90–101, 2006. View at Google Scholar · View at Scopus
  23. Q. Yang, S. Tu, G. Wang, X. Liao, and X. Yan, “Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L,” International Journal of Phytoremediation, vol. 14, no. 1, pp. 89–99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Xiong, W. Wang, H. Fan, L. Cai, and G. Wang, “Arsenic resistant bacteria in mining wastes from Shangrao coal mine of China,” Environmental Science and Technology, vol. 1, pp. 535–540, 2006. View at Google Scholar
  25. H. M. Sehlin and E. B. Lindstrom, “Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC,” FEMS Microbiology Letters, vol. 93, no. 1, pp. 87–92, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Lièvremont, P. N. Bertin, and M.-C. Lett, “Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes,” Biochimie, vol. 91, no. 10, pp. 1229–1237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Muller, D. Lièvremont, D. D. Simeonova, J.-C. Hubert, and M.-C. Lett, “Arsenite oxidase aox genes from a metal-resistant β-proteobacterium,” Journal of Bacteriology, vol. 185, no. 1, pp. 135–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Chitpirom, S. Tanasupawat, A. Akaracharanya et al., “Comamonas terrae sp. nov., an arsenite-oxidizing bacterium isolated from agricultural soil in Thailand,” Journal of General and Applied Microbiology, vol. 58, pp. 245–251, 2012. View at Google Scholar
  29. J. A. Ritchie, “Arsenic and antimony in New Zealand thermal waters,” New Zealand Journal of Science, vol. 4, pp. 218–229, 1961. View at Google Scholar
  30. H. Nakahara, M. Yanokura, and Y. Murakami, “Environmental effects of geothermal waste water on the near-by river system,” Journal of Radioanalytical Chemistry, vol. 45, no. 1, pp. 25–36, 1978. View at Google Scholar · View at Scopus
  31. M. Kato, M. Y. Kumasaka, S. Ohnuma et al., “Comparison of barium and arsenic concentrations in well drinking water and in human body samples and a novel remediation system for these elements in well drinking water,” PLoS ONE, vol. 8, pp. 1–6, 2013. View at Google Scholar
  32. E. D. Burton, S. G. Johnston, and B. Planer-Freidrich, “Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid,” Chemical Geology, vol. 343, pp. 12–24, 2013. View at Google Scholar
  33. Sahachiro Hata, “The first miracle medicine in the world for syphilis treatment,” The World’s Greatest Japanese, 2008, http://www.japanese-greatest.com/biology-medicine/sahachiro-hata.html.
  34. R. N. Ratnaike, “Acute and chronic arsenic toxicity,” Postgraduate Medical Journal, vol. 79, no. 933, pp. 391–396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Spiegelstein, A. Gould, B. Wlodarczyk et al., “Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies,” Toxicology and Applied Pharmacology, vol. 203, no. 1, pp. 18–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Crawford, J. T. Cothren, D. E. Sohan, and J. R. Supak, “A history of cotton harvest AIDS,” in Cotton Harvest Management: Use and Influence of Harvest Aids, J. R. Supak and C. E. Snipes, Eds., pp. 1–19, The Cotton Foundation, Cordova Memphis, Tenn, USA, 2001. View at Google Scholar
  37. B. P. Jackson and P. M. Bertsch, “Determination of arsenic speciation in poultry wastes by IC-ICP-MS,” Environmental Science and Technology, vol. 35, no. 24, pp. 4868–4873, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. N. E. Keon, C. H. Swartz, D. J. Brabander, C. Harvey, and H. F. Hemond, “Validation of an arsenic sequential extraction method for evaluating mobility in sediments,” Environmental Science and Technology, vol. 35, no. 13, pp. 2778–2784, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Mondal, S. Bhowmick, D. Chatterjee, A. Figoli, and B. V. der Bruggen, “Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions,” Chemosphere, vol. 92, pp. 157–170, 2013. View at Google Scholar
  40. C.-H. Tseng, “Blackfoot disease and arsenic: a never-ending story,” Journal of Environmental Science and Health C, vol. 23, no. 1, pp. 55–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Hadi and R. Parveen, “Arsenicosis in Bangladesh: prevalence and socio-economic correlates,” Public Health, vol. 118, no. 8, pp. 559–564, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. N. K. Mandal and R. Biswas, “A study on arsenical dermatosis in rural community of West Bengal,” Indian Journal of Public Health, vol. 48, no. 1, pp. 30–33, 2004. View at Google Scholar · View at Scopus
  43. S.-N. Lu, N.-H. Chow, W.-C. Wu et al., “Characteristics of hepatocellular carcinoma in a high arsenicism area in taiwan: a case-control study,” Journal of Occupational and Environmental Medicine, vol. 46, no. 5, pp. 437–441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J. He and L. Charlet, “A review of arsenic presence in China drinking water,” Journal of Hydrology, vol. 492, pp. 79–88, 2013. View at Google Scholar
  45. R. Nickson, J. McArthur, W. Burgess, K. Matin Ahmed, P. Ravenscroft, and M. Rahman, “Arsenic poisoning of Bangladesh groundwater,” Nature, vol. 395, no. 6700, p. 338, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. J. K. Thakur, R. K. Thakur, A. L. Ramanathan, M. Kumar, and S. K. Singh, “Arsenic contamination of groundwater in Nepal-An overview,” Water, vol. 3, pp. 1–20, 2011. View at Google Scholar
  47. M.-S. Lai, Y.-M. Hsueh, C.-J. Chen et al., “Ingested inorganic arsenic and prevalence of diabetes mellitus,” American Journal of Epidemiology, vol. 139, no. 5, pp. 484–492, 1994. View at Google Scholar · View at Scopus
  48. E. A. Maull, H. Ahsan, J. Edwards, M. P. Longnecker, A. Navas-Acien, and J. Pi, “Evaluation of the association between arsenic and diabetes: a national toxicology program workshop review,” Environmental Health Perspectives, vol. 120, pp. 1658–1670, 2012. View at Google Scholar
  49. M. A. Morgano, L. C. Rabonato, R. F. Milani, L. Miyagusku, and K. D. Quintaes, “As, Cd, Cr, Pb and Hg in seafood species used for sashimi and evaluation of dietary exposure,” Food Control, vol. 36, pp. 24–29, 2014. View at Google Scholar
  50. R. Y. Li, J. L. Stroud, J. F. Ma, S. P. Mcgrath, and F. J. Zhao, “Mitigation of arsenic accumulation in rice with water management and silicon fertilization,” Environmental Science and Technology, vol. 43, no. 10, pp. 3778–3783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. P. K. Sahoo and K. Kim, “A review of the arsenic concentration in paddy rice from the perspective of geoscience,” Geosciences Journal, vol. 17, pp. 107–122, 2013. View at Google Scholar
  52. M. Rodríguez-Barranco, M. Lacasaña, C. Aguilar-Garduño et al., “Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis,” Science of the Total Environment, vol. 454, pp. 562–577, 2013. View at Google Scholar
  53. H. C. Yang, H. L. Fu, Y. F. Lin, and B. P. Rosen, “Pathways of arsenic uptake and efflux,” Current Topics in Membranes, vol. 69, pp. 325–358, 2012. View at Google Scholar
  54. B. P. Rosen and M. J. Tamás, “Arsenic transport in prokaryotes and eukaryotic microbes,” Advances in Experimental Medicine and Biology, vol. 679, pp. 47–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Council Directive 98/83/EC, “The quality of water intended for human consumption,” Official Journal of the European Communities, vol. 330, pp. 32–54, 1998. View at Google Scholar
  56. G. A. Waychunas, C. S. Kim, and J. F. Banfield, “Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms,” Journal of Nanoparticle Research, vol. 7, no. 4-5, pp. 409–433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. B. P. Rosen, “Biochemistry of arsenic detoxification,” FEBS Letters, vol. 529, no. 1, pp. 86–92, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Mukhopadhyay, B. P. Rosen, L. T. Phung, and S. Silver, “Microbial arsenic: from geocycles to genes and enzymes,” FEMS Microbiology Reviews, vol. 26, no. 3, pp. 311–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Chen, J. Qin, Y. G. Zhu, V. de Lorenzo, and B. P. Rosen, “Engineering the soil bacterium pseudomonas putida for arsenic methylation,” Applied and Environmental Microbiology, vol. 79, pp. 4493–4495, 2013. View at Google Scholar
  60. A. A. Ajees, K. Marapakala, C. Packianathan, B. Sankaran, and B. P. Rosen, “Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation,” Biochemistry, vol. 51, pp. 5476–5485, 2012. View at Google Scholar
  61. B. Rosen, K. Marapakala, A. A. Abdul Salam, C. Packianathan, and M. Yoshinaga, “Pathways of arsenic biotransformations: the arsenic methylation cycle,” in Understanding the Geological and Medical Interface of Arsenic, 4th International Congress on Arsenic in the Environment, pp. 185–188, 2012.
  62. B. P. Rosen, A. A. Ajees, and T. R. Mcdermott, “Life and death with arsenic,” BioEssays, vol. 33, no. 5, pp. 350–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. L. M. Mateos, B. Rosen, and J. Messens, “The arsenic stress defense mechanism of Corynebaterium glutamicum revealed,” in Understanding the Geological and Medical Interface of Arsenic, 4th International Congress on Arsenic in the Environment, pp. 209–210, 2012. View at Google Scholar
  64. W. Musingarimi, M. Tuffin, and D. Cowan, “Characterisation of the arsenic resistance genes in Bacillus sp. UWC isolated from maturing fly ash acid mine drainage Neutralised solids,” South African Journal of Science, vol. 106, no. 1-2, pp. 59–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. M. F. Villegas-Torres, O. C. Bedoya-Reina, C. Salazar, M. J. Vives-Florez, and J. Dussan, “Horizontal arsC gene transfer among microorganisms isolated from arsenic polluted soil,” International Biodeterioration and Biodegradation, vol. 65, no. 1, pp. 147–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Mukhopadhyay and P. R. Barry, “Arsenate reductases in prokaryotes and eukaryotes,” Environmental Health Perspectives, vol. 10, no. 5, pp. 745–748, 2002. View at Google Scholar
  67. K. Zargar, S. Hoeft, R. Oremland, and C. W. Saltikov, “Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1,” Journal of Bacteriology, vol. 192, no. 14, pp. 3755–3762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. F. Stolz and R. S. Oremland, “Bacterial respiration of arsenic and selenium,” FEMS Microbiology Reviews, vol. 23, no. 5, pp. 615–627, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. V. H.-C. Liao, Y.-J. Chu, Y.-C. Su et al., “Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan,” Journal of Contaminant Hydrology, vol. 123, no. 1-2, pp. 20–29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Honschopp, N. Brunken, A. Nehrkorn, and H. J. Breunig, “Isolation and characterization of a new arsenic methylating bacterium from soil,” Microbiological Research, vol. 151, no. 1, pp. 37–41, 1996. View at Google Scholar · View at Scopus
  71. P. Aksornchu, P. Prasertsan, and V. Sobhon, “Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil,” Songklanakarin Journal of Science and Technology, vol. 30, no. 1, pp. 95–102, 2008. View at Google Scholar · View at Scopus
  72. A. C. Mumford, J. L. Barringer, W. M. Benzel, P. A. Reilly, and L. Y. Young, “Microbial transformations of arsenic: mobilization from glauconitic sediments to water,” Water Research, vol. 46, no. 9, pp. 2859–2868, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Huber, M. Sacher, A. Vollmann, H. Huber, and D. Rose, “Respiration of arsenate and selenate by hyperthermophilic archaea,” Systematic and Applied Microbiology, vol. 23, no. 3, pp. 305–314, 2000. View at Google Scholar · View at Scopus
  74. R. S. Oremland and J. F. Stolz, “The ecology of arsenic,” Science, vol. 300, no. 5621, pp. 939–944, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. G. A. Youssef, S. A. El-Aassar, M. Berekaa, M. El-Shaer, and J. Stolz, “Arsenate and selenate reduction by some facultative bacteria in the Nile Delta,” American-Eurasian Journal of Agriculture and Environmental Science, vol. 5, pp. 847–855, 2009. View at Google Scholar
  76. S. C. R. Granchinho, E. Polishchuk, W. R. Cullen, and K. J. Reimer, “Biomethylation and bioaccumulation of arsenic(V) by marine alga Fucus gardneri,” Applied Organometallic Chemistry, vol. 15, no. 6, pp. 553–560, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Maeda, S. Nakashima, T. Takeshita, and S. Higashi, “Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment,” Separation Science and Technology, vol. 20, no. 2-3, pp. 153–161, 1985. View at Google Scholar · View at Scopus
  78. J. Chen, Y. G. Zhu, and B. P. Rosen, “A novel biosensor selective for organoarsenicals,” Applied and Environmental Microbiology, vol. 78, pp. 7145–7147, 2012. View at Google Scholar
  79. W. Ngeontae, W. Janrungroatsakul, P. Maneewattanapinyo, S. Ekgasit, W. Aeungmaitrepirom, and T. Tuntulani, “Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker,” Sensors and Actuators B, vol. 137, no. 1, pp. 320–326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Zhou and J. Zhi, “The application of boron-doped diamond electrodes in amperometric biosensors,” Talanta, vol. 79, no. 5, pp. 1189–1196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. Z. Gao and N. Tansil, “A DNA biosensor based on the electrocatalytic oxidation of amine by a threading intercalator,” Analytica Chimica Acta, vol. 636, no. 1, pp. 77–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Wasoh, L. Y. Heng, F. Abu Bakar et al., “A simple capacitive biosensor device for histamine measurement,” Sensor Review, vol. 32, pp. 245–250, 2012. View at Google Scholar
  83. L. Malic, T. Veres, and M. Tabrizian, “Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization,” Biosensors and Bioelectronics, vol. 24, no. 7, pp. 2218–2224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Hao, D. Wang, X. Zhang et al., “Rapid detection of Bacillusanthracis using monoclonal antibody functionalized QCM sensor,” Biosensors and Bioelectronics, vol. 24, no. 5, pp. 1330–1335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Liu, V. Balsamo, D. Sun et al., “A 3D localized surface plasmon resonance biosensor for the study of trivalent arsenic binding to the ArsA ATPase,” Biosensors and Bioelectronics, vol. 38, pp. 19–26, 2012. View at Google Scholar