Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 510385, 6 pages
http://dx.doi.org/10.1155/2014/510385
Review Article

Mechanisms of Contrast-Induced Nephropathy Reduction for Saline (NaCl) and Sodium Bicarbonate (NaHCO3)

MD Scientific, LLC, 1214 Wareham Court, Charlotte, NC 28207, USA

Received 19 October 2013; Revised 28 February 2014; Accepted 19 March 2014; Published 15 April 2014

Academic Editor: Michele Andreucci

Copyright © 2014 W. Patrick Burgess and Phillip J. Walker. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Alwall, P. Erlanson, and A. Tornberg, “The clinical course of renal failure occurring after intravenous urography and/or retrograde pyelography,” Acta Medica Scandinavica, vol. 152, no. 3, pp. 163–173, 1955. View at Google Scholar
  2. A. Alonso and M. J. Sarnak, “Radiocontrast nephropathy. Nephrology rounds,” Brigham and Women's HoSpital, MaSSachucettS, vol. 4, no. 7, pp. 1–6, 2006. View at Google Scholar
  3. KDIGO, Clinical Guidelines. National Kidney Foundation, Kidney International Supplement, 2013.
  4. S. N. Heyman, S. Rosen, M. Khamaisi, J.-M. Idée, and C. Rosenberger, “Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy,” Investigative Radiology, vol. 45, no. 4, pp. 188–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. N. Heyman, M. Brezis, C. A. Reubinoff et al., “Acute renal failure with selective medullary injury in the rat,” The Journal of Clinical Investigation, vol. 82, no. 2, pp. 401–412, 1988. View at Google Scholar · View at Scopus
  6. G. L. Bakris, N. Lass, A. O. Gaber, J. D. Jones, and J. C. Burnett Jr., “Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals,” American Journal of Physiology, Renal Fluid and Electrolyte Physiology, vol. 258, no. 1, pp. F115–F120, 1990. View at Google Scholar · View at Scopus
  7. E. Seeliger, M. Sendeski, C. S. Rihal, and P. B. Persson, “Contrast-induced kidney injury: mechanisms, risk factors, and prevention,” European Heart Journal, vol. 33, no. 16, pp. 2007–2015, 2012. View at Publisher · View at Google Scholar
  8. K.-J. Andersen, E. I. Christensen, and H. Vik, “Effects of iodinated x-ray contrast media on renal epithelial cells in culture,” Investigative Radiology, vol. 29, no. 11, pp. 955–962, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Heinrich, M. Scheer, M. Heckmann, W. Bautz, and M. Uder, “Reversibility and time-dependency of contrast medium induced inhibition of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) conversion in renal proximal tubular cells in vitro: comparison of a monomeric and a dimeric nonionic iodinated contrast medium,” Investigative Radiology, vol. 42, no. 11, pp. 732–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Romano, C. Briguori, C. Quintavalle et al., “Contrast agents and renal cell apoptosis,” European Heart Journal, vol. 29, no. 20, pp. 2569–2576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Sendeski, “Pathophysiology of renal tissue damage by iodinated contrast media,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 5, pp. 292–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. G. Svaland, T. Haider, K. Langseth-Manrique, E. Andrew, and P. A. Hals, “Human pharmacokinetics of iodixanol,” Investigative Radiology, vol. 27, no. 2, pp. 130–133, 1992. View at Google Scholar · View at Scopus
  13. J. O. Nossen, J. A. Jakobsen, P. Kjaersgaard, E. Andrew, P. B. Jacobsen, and K. J. Berg, “Elimination of the non-ionic X-ray contrast media iodixanol and iohexol in patients with severely impaired renal function,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 55, no. 4, pp. 341–350, 1995. View at Google Scholar · View at Scopus
  14. S. Usutani, “Contrast nephropathy with a non-ionic iodide medium in patients with normal and mildly impaired renal function,” Japanese Journal of Nephrology, vol. 42, no. 4, pp. 338–345, 2000. View at Google Scholar · View at Scopus
  15. A. I. Katz, “Distribution and function of classes of ATPases along the nephron,” Kidney International, vol. 29, no. 1, pp. 21–31, 1986. View at Google Scholar · View at Scopus
  16. E. Féraille and A. Doucet, “Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control,” Physiological Reviews, vol. 81, no. 1, pp. 345–418, 2001. View at Google Scholar · View at Scopus
  17. C. E. Thomas, C. E. Ott, P. D. Bell, F. G. Knox, and L. G. Navar, “Glomerular filtration dynamics during renal vasodilation with acetylcholine in the dog,” The American journal of physiology, vol. 244, no. 6, pp. F606–F611, 1983. View at Google Scholar · View at Scopus
  18. W. Zhang and A. Edwards, “Oxygen transport across vasa recta in the renal medulla,” American Journal of Physiology, Heart and Circulatory Physiology, vol. 283, no. 3, pp. H1042–H1055, 2002. View at Google Scholar · View at Scopus
  19. M. I. Lindinger, T. W. Franklin, L. C. Lands, P. K. Pedersen, D. G. Welsh, and G. J. F. Heigenhauser, “NaHCO3 and KHCO3 ingestion rapidly increases renal electrolyte excretion in humans,” Journal of Applied Physiology, vol. 88, no. 2, pp. 540–550, 2000. View at Google Scholar · View at Scopus
  20. R. Mehran, E. D. Aymong, E. Nikolsky et al., “A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation,” Journal of the American College of Cardiology, vol. 44, no. 7, pp. 1393–1399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Mueller, G. Buerkle, H. J. Buettner et al., “Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty,” Archives of Internal Medicine, vol. 162, no. 3, pp. 329–336, 2002. View at Google Scholar · View at Scopus
  22. H. S. Trivedi, H. Moore, S. Nasr et al., “A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity,” Nephron. Clinical practice, vol. 93, no. 1, pp. C29–C34, 2003. View at Google Scholar · View at Scopus
  23. G. Marenzi, C. Ferrari, I. Marana et al., “Prevention of contrast nephropathy by furosemide with matched hydration: the MYTHOS (induced diuresis with matched hydration compared to standard hydration for contrast induced nephropathy prevention) trial,” Cardiovascular Interventions, vol. 5, no. 1, pp. 90–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Solomon, C. Werner, D. Mann, J. D'Elia, and P. Silva, “Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents,” The New England Journal of Medicine, vol. 331, no. 21, pp. 1416–1420, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. S. N. Heyman, M. Brezis, F. H. Epstein, K. Spokes, P. Silva, and S. Rosen, “Early renal medullary hypoxic injury from radiocontrast and indomethacin,” Kidney International, vol. 40, no. 4, pp. 632–642, 1991. View at Google Scholar · View at Scopus
  26. A. Sebastian, L. A. Frassetto, D. E. Sellmeyer, R. L. Merriam, and R. C. Morris Jr., “Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors,” American Journal of Clinical Nutrition, vol. 76, no. 6, pp. 1308–1316, 2002. View at Google Scholar · View at Scopus
  27. T. D. DuBose Jr., L. R. Pucacco, M. S. Lucci, and N. W. Carter, “Micropuncture determination of pH, PCO2, and total CO2 concentration in accessible structures of the rat renal cortex,” The Journal of Clinical Investigation, vol. 64, no. 2, pp. 476–482, 1979. View at Google Scholar · View at Scopus
  28. J. Buerkert, D. Martin, and D. Trigg, “Segmental analysis of the renal tubule in buffer production and net acid formation,” American Journal of Physiology, Renal Fluid and Electrolyte Physiology, vol. 13, no. 4, pp. F442–F454, 1983. View at Google Scholar · View at Scopus
  29. C. W. Gottschalk, W. E. Lassiter, and M. Mylle, “Localization of urine acidification in the mammalian kidney,” The American journal of physiology, vol. 198, pp. 581–585, 1960. View at Google Scholar · View at Scopus
  30. R. F. Reilly and D. H. Ellison, “Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy,” Physiological Reviews, vol. 80, no. 1, pp. 277–313, 2000. View at Google Scholar · View at Scopus
  31. D. Storch, D. Abele, and H.-O. Pörtner, “The effect of hydrogen peroxide on isolated body wall of the lugworm Arenicola marina (L.) at different extracellular pH levels,” Comparative Biochemistry and Physiology C Toxicology and Pharmacology, vol. 128, no. 2, pp. 391–399, 2001. View at Google Scholar · View at Scopus
  32. B. K. Siesjö, K. I. Katsura, T. Kristián, P.-A. Li, and P. Siesjö, “Molecular mechanisms of acidosis-mediated damage,” Acta Neurochirurgica, Supplement, vol. 1996, no. 66, pp. 8–14, 1996. View at Google Scholar · View at Scopus
  33. G. J. Merten, W. P. Burgess, L. V. Gray et al., “Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial,” Journal of the American Medical Association, vol. 291, no. 19, pp. 2328–2334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. L. Caulfield, S. P. Singh, J. S. Wishnok, W. M. Deen, and S. R. Tannenbaum, “Bicarbonate inhibits N-nitrosation in oxygenated nitric oxide solutions,” The Journal of Biological Chemistry, vol. 271, no. 42, pp. 25859–25863, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Barlak, H. Akar, Y. Yenicerioglu, C. Yenisey, I. Meteoǧlu, and O. Yilmaz, “Effect of sodium bicarbonate in an experimental model of radiocontrast nephropathy,” Renal Failure, vol. 32, no. 8, pp. 992–999, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Assadi, “Acetazolamide for prevention of contrast-induced nephropathy: a new use for an old drug,” Pediatric Cardiology, vol. 27, no. 2, pp. 238–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Briguori, F. Airoldi, D. D'Andrea et al., “Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies,” Circulation, vol. 115, no. 10, pp. 1211–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Recio-Mayoral, M. Chaparro, B. Prado et al., “The reno-protective effect of infusion with sodium bicarbonate plus N-acetylcysteine in patients undergoing emergency percutaneous coronary intervention: the RENO study,” Journal of the American College of Cardiology, vol. 49, no. 12, pp. 1283–1288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Adolph, B. Holdt-Lehmann, T. Chatterjee et al., “Renal insufficiency following radiocontrast exposure trial (REINFORCE): a randomized comparison of sodium bicarbonate versus sodium chloride hydration for the prevention of contrast-induced nephropathy,” Coronary Artery Disease, vol. 19, no. 6, pp. 413–419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Masuda, T. Yamada, T. Mine et al., “Comparison of usefulness of sodium bicarbonate versus sodium chloride to prevent contrast-induced nephropathy in patients undergoing an emergent coronary procedure,” American Journal of Cardiology, vol. 100, no. 5, pp. 781–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Maioli, A. Toso, M. Leoncini, C. Micheletti, and F. Bellandi, “Effects of hydration in contrast-induced acute kidney injury after primary angioplasty: a randomized, controlled trial,” Circulation, Cardiovascular Interventions, vol. 4, no. 5, pp. 456–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. S. Brar, A. Y.-J. Shen, M. B. Jorgensen et al., “Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1038–1046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. J. A. Ratcliffe, P. Thiagarajah, J. Chen et al., “Prevention of contrast-induced nephropathy: a randomized controlled trial of sodium bicarbonate and N-acetylcysteine,” International Journal of Angiology, vol. 18, no. 4, pp. 193–197, 2009. View at Publisher · View at Google Scholar
  44. M. Maioli, A. Toso, M. Leoncini et al., “Sodium bicarbonate versus saline for the prevention of contrast-induced nephropathy in patients with renal dysfunction undergoing coronary arteriography or interventions,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 599–604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Vasheghani-Farahani, G. Sadigh, S. E. Kassaian et al., “Sodium bicarbonate plus isotonic saline versus saline for prevention of contrast-induced nephropathy in patients undergoing coronary angiography: a randomized controlled trial,” American Journal of Kidney Diseases, vol. 54, no. 4, pp. 610–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Vasheghani-Farahani, G. Sadigh, S. E. Kassaian et al., “Sodium bicarbonate in preventing contrast nephropathy in patients at risk for volume overload: a randomized controlled trial,” Journal of Nephrology, vol. 23, no. 2, pp. 216–223, 2010. View at Google Scholar · View at Scopus
  47. T. Klima, A. Christ, I. Marana et al., “Sodium chloride vs. sodium bicarbonate for the prevention of contrast medium-induced nephropathy: a randomized controlled trial,” European Heart Journal, vol. 33, no. 16, pp. 2071–2079, 2012. View at Publisher · View at Google Scholar