Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 536508, 10 pages
http://dx.doi.org/10.1155/2014/536508
Review Article

Emerging Anticancer Potentials of Goniothalamin and Its Molecular Mechanisms

1Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kualalumpur, Malaysia
2School of Life Sciences, B.S. Abdur Rahman University, Seethakathi Estate, Vandalur, Chennai 600048, India

Received 13 June 2014; Revised 23 July 2014; Accepted 25 July 2014; Published 28 August 2014

Academic Editor: Gautam Sethi

Copyright © 2014 Mohamed Ali Seyed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. W. Stewart and C. P. Wild, Eds., World Cancer Report 2014, International Agency for Research on Cancer, Lyon, France, 2014.
  2. “SEER Cancer Statistics Review 1975–2010, National Cancer Institute, Cancer Facts and Figures 2013, American Cancer Society (ACS),” IARC, Globocan, Atlanta, Ga, USA, 2012.
  3. N. W. Kim, M. A. Piatyszek, K. R. Prowse et al., “Specific association of human telomerase activity with immortal cells and cancer,” Science, vol. 266, no. 5193, pp. 2011–2015, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. C. de Martel, J. Ferlay, S. Franceschi et al., “Global burden of cancers attributable to infections in 2008: a review and synthetic analysis,” The Lancet Oncology, vol. 13, no. 6, pp. 607–615, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. H. C. Pitot, Fundamentals of Oncology (Hardcover, Revised), 2002.
  6. M. Ali-Seyed, R. Bhuvaneswari, K. C. Soo, and M. Olivo, “Photolon—Photosensitization induces apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes,” International Journal of Oncology, vol. 39, no. 4, pp. 821–831, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Mann, “Natural products in cancer chemotherapy: past, present and future,” Nature Reviews Cancer, vol. 2, no. 2, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Bauman, “Updating the evidence that physical activity is good for health: an epidemiological review 2000–2003,” Journal of Science and Medicine in Sport, vol. 7, no. 1, pp. 6–19, 2004. View at Google Scholar · View at Scopus
  9. W. C. Willett, “Diet and health: what should we eat?” Science, vol. 264, no. 5158, pp. 532–537, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. T. Pang, J. J. Shan, and K. W. Chiu, “Pharmacological standardization of herbal extracts,” in USPTO Patent Full-Text and Image Database, USPTO, Ed., CV Technologies, Jupiter, Fla, USA, 2000. View at Google Scholar
  11. H. O. Edeoga, D. E. Okwu, and B. O. Mbaebie, “Phytochemical constituents of some Nigerian medicinal plants,” African Journal of Biotechnology, vol. 4, no. 7, pp. 685–688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Pan and C. Ho, “Chemopreventive effects of natural dietary compounds on cancer development,” Chemical Society Reviews, vol. 37, no. 11, pp. 2558–2574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Shoeb, “Anticancer agents from medicinal plants,” Bangladesh Journal of Pharmacology, vol. 1, pp. 35–41, 2006. View at Google Scholar
  14. G. M. Cragg and D. J. Newman, “Plants as a source of anti-cancer agents,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 72–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Bailly, “Ready for a comeback of natural products in oncology,” Biochemical Pharmacology, vol. 77, no. 9, pp. 1447–1457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. G. M. Cragg, D. J. Newman, and R. B. Weiss, “Coral reefs, forests, and thermal vents: the worldwide exploration of nature for novel antitumor agents,” Seminars in Oncology, vol. 24, no. 2, pp. 156–163, 1997. View at Google Scholar · View at Scopus
  17. D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the last 25 years,” Journal of Natural Products, vol. 70, no. 3, pp. 461–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. K. Saunders, “A synopsis of Goniothalamus species (Annonaceae) in Peninsular Malaysia, with a description of a new species,” Botanical Journal of the Linnean Society, vol. 142, no. 3, pp. 321–339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. I. H. Burkill, A Dictionary of the Economic Products of the Malay Peninsula, Ministry of Agriculture and Cooperative, Kuala Lumpur, Malaysia, 1966.
  20. Y. J. Zhang, M. Kong, R. Y. Chen, and D. Q. Yu, “Alkaloids from the roots of Goniothalamus griffithii,” Journal of Natural Products, vol. 62, no. 7, pp. 1050–1052, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. J. Zhang, G. X. Zhou, R. Y. Chen, and D. Q. Yu, “Styryllactones from the rhizomes of Goniothalamus griffithii,” Journal of Asian Natural Products Research, vol. 1, no. 3, pp. 189–197, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Seidel, F. Bailleul, and P. G. Waterman, “(Rel)-1β,2α-di-(2,4-dihydroxy-6-methoxybenzoyl)-3β,4α-di-(4-methoxyphenyl)-cyclobutane and other flavonoids from the aerial parts of Goniothalamus gardneri and Goniothalamus thwaitesii,” Phytochemistry, vol. 55, no. 5, pp. 439–446, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Mu, W. D. Tang, R. Y. Liu et al., “Constituents from the Stems of Goniothalamus griffithii,” Planta Medica, vol. 69, no. 9, pp. 826–830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Wang, S. J. Dai, R. Y. Chen, S. S. Yu, and D. Q. Yu, “Two new styryllactones from Goniothalamus cheliensis,” Chinese Chemical Letters, vol. 14, no. 5, pp. 487–488, 2003. View at Google Scholar · View at Scopus
  25. Y. H. Lan, F. R. Chang, C. C. Liaw, C. C. Wu, M. Y. Chiang, and Y. C. Wu, “Digoniodiol, deoxygoniopypyrone A, and goniofupyrone A: three new styryllactones from Goniothalamus amuyon,” Planta Medica, vol. 71, no. 2, pp. 153–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Jewers, J. B. Davis, J. Dougan et al., “Goniothalamin and its distribution in four Goniothalamus species,” Phytochemistry, vol. 11, no. 6, pp. 2025–2030, 1972. View at Publisher · View at Google Scholar · View at Scopus
  27. A. de Fátima, L. K. Kohn, J. E. de Carvalho, and R. A. Pilli, “Cytotoxic activity of (S)-goniothalamin and analogues against human cancer cells,” Bioorganic and Medicinal Chemistry, vol. 14, no. 3, pp. 622–631, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Â. de Fátima, L. V. Modolo, L. S. Conegero et al., “Styryl lactones and their derivatives: biological activities, mechanisms of action and potential leads for drug design,” Current Medicinal Chemistry, vol. 13, no. 28, pp. 3371–3384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. Tian, S. Chen, Y. Zhang et al., “The cytotoxicity of naturally occurring styryl lactones,” Phytomedicine, vol. 13, no. 3, pp. 181–186, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. B. Calixto, M. M. Campos, M. F. Otuki, and A. R. S. Santos, “Anti-inflammatory compounds of plant origin. Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules,” Planta Medica, vol. 70, no. 2, pp. 93–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. B. A. Moharam, I. Jantan, J. Jalil, and F. Ahmad, “Inhibitory effect of compounds from Goniothalamus tapis Miq. and Goniothalamus uvaroides King on platelet-activating factor receptor binding,” Phytotherapy Research, vol. 26, no. 5, pp. 687–691, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. T. P. Lin and A. H. L. Pihie, “Goniothalamin-induced apoptosis in human ovarian cancer cell line,” Borneo Science, vol. 14, pp. 9–14, 2003. View at Google Scholar
  33. W. Chen, C. Wu, Y. Lan, F. Chang, C. Teng, and Y. Wu, “Goniothalamin induces cell cycle-specific apoptosis by modulating the redox status in MDA-MB-231 cells,” European Journal of Pharmacology, vol. 522, no. 1-3, pp. 20–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Blázquez, A. M. Bermejo, Z. P. Carmen, and D. Cortes, “Styryl-lactones from Goniothalamus species—a review,” Phytochemical Analysis, vol. 10, no. 4, pp. 161–170, 1999. View at Google Scholar
  35. A. Bermejo, M. A. Blázquez, K. S. Rao, and D. Cortes, “Styryl-pyrones from Goniothalamus arvensis,” Phytochemistry, vol. 47, no. 7, pp. 1375–1380, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. S.-G. Cao, X.-H. Wu, K.-Y. Sim, B. K. H. Tan, J. T. Pereira, and S. Goh, “Styryl-lactone derivatives and alkaloids from Goniothalamus borneenis (Annonaceae),” Tetrahedron, vol. 54, no. 10, pp. 2143–2148, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Hisham, A. Harassi, W. Shuaily, S. Echigo, and Y. Fujimoto, “Cardiopetalolactone: a novel styryllactone from G. cardiopetalus,” Tetrahedron, vol. 56, no. 51, pp. 9985–9989, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Hisham, M. Toubi, W. Shuaily, M. D. A. Bai, and Y. Fujimoto, “Cardiobutanolide, a styryllactone from Goniothalamus cardiopetalus,” Phytochemistry, vol. 62, no. 4, pp. 597–600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. Colegate, L. B. Din, A. Latiff et al., “(+)-Isoaltholactone: a furanopyrone isolated from Goniothalamus species,” Phytochemistry, vol. 29, no. 5, pp. 1701–1704, 1990. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Wang, Y. J. Zhang, R. Y. Chen, and D. Q. Yu, “Goniolactones A-F, six new styrylpyrone derivatives from the roots of Goniothalamus cheliensis,” Journal of Natural Products, vol. 65, no. 6, pp. 835–841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. F. B. Ahmad, W. A. Tukol, S. Omar, and A. M. Sharif, “5-Acetyl goniothalamin, a styryl dihydropyrone from G. uvaroides,” Phytochemistry, vol. 30, no. 7, pp. 2430–2431, 1991. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Wu, C. Duh, F. Chang et al., “The crystal structure and cytotoxicity of goniodiol-7-monoacetate from G. amuyon,” Journal of Natural Products, vol. 54, no. 4, pp. 1077–1081, 1991. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Wu, F. Chang, C. Duh, S. Wang, and T. Wu, “Cytotoxic styrylpyrones of Goniothalamus amuyon,” Phytochemistry, vol. 31, no. 8, pp. 2851–2853, 1992. View at Publisher · View at Google Scholar · View at Scopus
  44. C. M. Hasan, M. Y. Mia, M. A. Rashid, and J. D. Connolly, “5-Acetoxyisogoniothalamin oxide, an epoxystyryl lactone from Goniothalamus sesquipedalis,” Phytochemistry, vol. 37, no. 6, pp. 1763–1764, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Lan, F. Chang, J. Yu et al., “Cytotoxic styrylpyrones from Goniothalamus amuyon,” Journal of Natural Products, vol. 66, no. 4, pp. 487–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Chen, D. Yu, L. Ma, F. Wu, and W. Song, “The chemical constituents of Goniothalamus howii Merr,” Yao Xue Xue Bao, vol. 33, no. 6, pp. 453–456, 1998. View at Google Scholar · View at Scopus
  47. M. A. Mosaddik and M. E. Haque, “Toxicological evaluation of goniothalamin i isolated from bryonopsis laciniosa linn, in rats,” Pharmacy and Pharmacology Communications, vol. 5, no. 6, pp. 411–413, 1999. View at Google Scholar
  48. S. A. El-Zayat, M. S. M. Nassar, F. T. El-Hissy, F. F. Abdel-Motaal, and S. Ito, “Mycoflora associated with Hyoscyamus muticus growing under an extremely arid desert environment (Aswan region, Egypt),” Journal of Basic Microbiology, vol. 48, no. 2, pp. 82–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Pospíšil and I. E. Markó, “Total synthesis of (R)-(+)-goniothalamin and (R)-(+)-goniothalamin oxide: first application of the sulfoxide-modified Julia olefination in total synthesis,” Tetrahedron Letters, vol. 47, no. 33, pp. 5933–5937, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. P. V. Ramachandran, M. V. R. Reddy, and H. C. Brown, “Asymmetric synthesis of goniothalamin, hexadecanolide, massoia lactone, and parasorbic acid via sequential allylboration-esterification ring-closing metathesis reactions,” Tetrahedron Letters, vol. 41, no. 5, pp. 583–586, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. Â. De Fátima and R. A. Pilli, “Enantioselective approach to the asymmetric synthesis of (6R)-hydroxymethyl-5,6-dihydro-2H-pyran-2-one. A formal synthesis of (R)-argentilactone and total synthesis of (R)-goniothalamin,” Arkivoc, vol. 2003, no. 10, pp. 118–126, 2003. View at Google Scholar · View at Scopus
  52. M. Tsubuki, K. Kanal, and T. Honda, “Enantioselective synthesis of 6-substituted 5,6-dihydro-α-pyranones, (+)-goniothalamin and (-)-argentilactone,” Heterocycles, vol. 35, no. 1, pp. 281–288, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Sundby, L. Perk, T. Anthonsen, A. J. Aasen, and T. V. Hansen, “Synthesis of (+)-goniothalamin and its enantiomer by combination of lipase catalyzed resolution and alkene metathesis,” Tetrahedron, vol. 60, no. 3, pp. 521–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Gruttadauria, P. Lo Meo, and R. Noto, “Short and efficient chemoenzymatic synthesis of goniothalamin,” Tetrahedron Letters, vol. 45, no. 1, pp. 83–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. H. C. Brown and P. K. Jadhav, “Asymmetric carbon-carbon bond formation via β-allyldiisopinocampheylborane. Simple synthesis of secondary homoallylic alcohols with excellent enantiomeric purities,” Journal of the American Chemical Society, vol. 105, no. 7, pp. 2092–2093, 1983. View at Publisher · View at Google Scholar · View at Scopus
  56. H. C. Brown and P. Veeraraghavan Ramachandran, “Versatile α-pinene-based borane reagents for asymmetric syntheses,” Journal of Organometallic Chemistry, vol. 500, no. 1-2, pp. 1–19, 1995. View at Publisher · View at Google Scholar · View at Scopus
  57. B. O'Connor and G. Just, “Syntheses of argentilactone 11 and Goniothalamin 15,” Tetrahedron Letters, vol. 27, no. 43, pp. 5201–5202, 1986. View at Publisher · View at Google Scholar · View at Scopus
  58. S. S. Rahman, B. J. Wakefield, S. M. Roberts, and M. D. Dowle, “Intramolecular nucleophilic addition to photochemically generated ketenes as a versatile route to lactones and lactams; synthesis of a mosquito pheromone, goniothalamin, argentilactone, and the Streptomyces L-factor,” Journal of the Chemical Society, Chemical Communications, no. 5, pp. 303–304, 1989. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Bennett and D. W. Knight, “An alternative approach to mevinic acid analogues from methyl (3R)-3-hydroxy-5-hexenoate and an extension to rational syntheses of (+)-(6R)-goniothalamin and its non-natural (-)-(6S)-enantiomer,” Tetrahedron Letters, vol. 29, no. 36, pp. 4625–4628, 1988. View at Publisher · View at Google Scholar · View at Scopus
  60. B. Henkel, A. Kunath, and H. Schick, “Enzymes in organic synthesis, 11. Enantioselective lactonization of methyl 3, 5-dihydroxyalkanoates. An access to (3R,5S,6E)-3-hydroxy-7-phenyl-6-hepten-5-olide by enzyme-catalyzed kinetic resolution in organic solvents,” Liebigs Annalen der Chemie, vol. 8, pp. 809–811, 1992. View at Google Scholar
  61. F. Bennett, D. W. Knight, and G. Fenton, “An alternative approach to mevinic acid analogues from methyl (3R)-(-)-3-hydroxyhex-5-enoate and an extension to unambiguous syntheses of (6R)-(+)-and (6S)-(-)-goniothalamin,” Journal of the Chemical Society, Perkin Transactions 1, no. 3, pp. 519–523, 1991. View at Google Scholar · View at Scopus
  62. Â. de Fátima, L. K. Kohn, M. A. Antônio, J. E. de Carvalho, and R. A. Pilli, “(R)-Goniothalamin: total syntheses and cytotoxic activity against cancer cell lines,” Bioorganic and Medicinal Chemistry, vol. 13, no. 8, pp. 2927–2933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Das, S. Nagendra, and C. R. Reddy, “Stereoselective total synthesis of (+)-cryptofolione and (+)-goniothalamin,” Tetrahedron Asymmetry, vol. 22, no. 11, pp. 1249–1254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Fournier, P. Kocienski, and J. Pons, “The β-lactone route to α,β-unsaturated δ-lactones. Total syntheses of (±)-goniothalamin and (-)-massoialactone,” Tetrahedron, vol. 60, no. 7, pp. 1659–1663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. D. B. Vendramini-Costa, I. B. D. D. Castro, A. L. T. G. Ruiz, C. Marquissolo, R. A. Pilli, and J. E. D. Carvalho, “Effect of goniothalamin on the development of Ehrlich solid tumor in mice,” Bioorganic and Medicinal Chemistry, vol. 18, no. 18, pp. 6742–6747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. H. Inayat-Hussain, L. T. Wong, K. M. Chan et al., “RACK-1 overexpression protects against goniothalamin-induced cell death,” Toxicology Letters, vol. 191, no. 2-3, pp. 118–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. S. H. Inayat-Hussain, B. O. Annuar, L. B. Din, A. M. Ali, and D. Ross, “Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells,” Toxicology in Vitro, vol. 17, no. 4, pp. 433–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Wattanapiromsakul, B. Wangsintaweekul, P. Sangprapan, A. Itharat, and N. Keawpradub, “Goniothalamin, a cytotoxic compound, isolated from Goniothalamus macrophyllus (Blume) Hook. f. & Thomson var. macrophyllus,” The Songklanakarin Journal of Science and Technology, vol. 27, Article ID 479487, 2005. View at Google Scholar
  69. N. Umar-Tsafe, M. S. Mohamed-Said, R. Rosli, L. B. Din, and L. C. Lai, “Genotoxicity of goniothalamin in CHO cell line,” Mutation Research, vol. 562, no. 1-2, pp. 91–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. Â. de Fátima, W. F. Zambuzzi, L. V. Modolo et al., “Cytotoxicity of goniothalamin enantiomers in renal cancer cells: involvement of nitric oxide, apoptosis and autophagy,” Chemico-Biological Interactions, vol. 176, no. 2-3, pp. 143–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. A. C. S. Souza, Â. de Fátima, R. B. da Silveira, and G. Z. Justo, “Seek and destroy: the use of natural compounds for targeting the molecular roots of cancer,” Current Drug Targets, vol. 13, no. 8, pp. 1072–1082, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Al-Qubaisi, R. Rozita, S. K. Yeap, A. R. Omar, A. M. Ali, and N. B. Alitheen, “Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 cells,” Molecules, vol. 16, no. 4, pp. 2944–2959, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Al-Qubaisi, R. Rosli, T. Subramani et al., “Goniothalamin selectively induces apoptosis on human hepatoblastoma cells through caspase-3 activation,” Natural Product Research, vol. 27, no. 23, pp. 2216–2218, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. A. M. Ali, M. M. Mackeen, M. Hamid et al., “Cytotoxicity and electron microscopy of cell death induced by goniothalamin,” Planta Medica, vol. 63, no. 1, pp. 81–83, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. A. H. L. Pihie, J. Stanslas, and L. B. Din, “Non-steroid receptor-mediated antiproliferative activity of styrylpyrone derivative in human breast cancer cell lines,” Anticancer Research, vol. 18, no. 3, pp. 1739–1743, 1998. View at Google Scholar · View at Scopus
  76. A. L. T. Chien and A. H. L. Pihie, “Styrylpyrone derivative induces apoptosis through the up-regulation of Bax in the human breast cancer cell line MCF-7,” Journal of Biochemistry and Molecular Biology, vol. 36, no. 3, pp. 269–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. P. L. Teoh and L. Azimahtol Hawariah, “Effects of goniothalamin of bcl-2 and bax genes in human ovarian carcinoma cell line, CaOV-3,” Malaysian Applied Biology Journal, vol. 28, pp. 113–118, 2000. View at Google Scholar
  78. K. M. Chan, N. F. Rajab, M. H. A. Ishak et al., “Goniothalamin induces apoptosis in vascular smooth muscle cells,” Chemico-Biological Interactions, vol. 159, no. 2, pp. 129–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. K. M. Chan, N. F. Rajab, D. Siegel, L. B. Din, D. Ross, and S. H. Inayat-Hussain, “Goniothalamin induces coronary artery smooth muscle cells apoptosis: the p53-dependent caspase-2 activation pathway,” Toxicological Sciences, vol. 116, no. 2, pp. 533–548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. N. F. Rajab, Z. A. Hamid, H. Hassan, M. A. Ali, L. B. Din, and S. H. Inayat-Hussain, “Evaluation of the cytotoxic and genotoxic effects of goniothalamin in leukemic cell lines,” Environmental Mutagen Research, vol. 27, pp. 161–164, 2005. View at Publisher · View at Google Scholar
  81. S. H. Inayat-Hussain, A. B. Osman, L. B. Din et al., “Caspases-3 and -7 are activated in goniothalamin-induced apoptosis in human Jurkat T-cells,” FEBS Letters, vol. 456, no. 3, pp. 379–383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. S. H. Inayat-Hussain, K. M. Chan, N. F. Rajab et al., “Goniothalamin-induced oxidative stress, DNA damage and apoptosis via caspase-2 independent and Bcl-2 independent pathways in Jurkat T-cells,” Toxicology Letters, vol. 193, no. 1, pp. 108–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Orlikova, M. Schumacher, T. Juncker et al., “Styryl-lactone goniothalamin inhibits TNF-α-induced NF-κB activation,” Food and Chemical Toxicology, vol. 59, pp. 572–578, 2013. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Petsophonsakul, W. Pompimon, and R. Banjerdpongchai, “Apoptosis induction in human leukemic promyelocytic HL-60 and monocytic U937 cell lines by Goniothalamin,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 5, pp. 2885–2889, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. K. K. Kuo, Y. L. Chen, L. R. Chen et al., “Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells,” Toxicology and Applied Pharmacology, vol. 256, no. 1, pp. 8–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. C. Semprebon, Â. de Fátima, S. R. Lepri, D. Sartori, L. R. Ribeiro, and M. S. Mantovani, “(S)-goniothalamin induces DNA damage, apoptosis, and decrease in BIRC5 messenger RNA levels in NCI-H460 cells,” Human and Experimental Toxicology, vol. 33, no. 1, pp. 3–13, 2014. View at Publisher · View at Google Scholar
  87. C. C. Chiu, P. L. Liu, K. J. Huang et al., “Goniothalamin inhibits growth of human lung cancer cells through DNA damage, apoptosis, and reduced migration ability,” Journal of Agricultural and Food Chemistry, vol. 59, no. 8, pp. 4288–4293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. C.-Y. Yen, C.-C. Chiu, R.-W. Haung et al., “Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 747, no. 2, pp. 253–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. A. M. Alabsi, R. Ali, A. M. Ali et al., “Apoptosis induction, cell cycle arrest and in vitro anticancer activity of gonothalamin in a cancer cell lines,” Asian Pacific Journal of Cancer Prevention, vol. 13, no. 10, pp. 5131–5136, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. A. M. Alabsi, R. Ali, A. M. Ali et al., “Induction of caspase-9, biochemical assessment and morphological changes caused by apoptosis in cancer cells treated with goniothalamin extracted from Goniothalamus macrophyllus,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 11, pp. 6273–6280, 2013. View at Google Scholar
  91. J. J. Cohen, “Apoptosis: the physiologic pathway of cell death,” Hospital Practice, vol. 28, no. 12, pp. 35–43, 1993. View at Google Scholar · View at Scopus
  92. D. Ren, G. Peng, C. H. Huang, B. H. Wang, and S. Zhang, “Effect of rhodoxanthin from Potamogeton crispus L. on cell apoptosis in Hela cells,” Toxicology in Vitro, vol. 20, no. 8, pp. 1411–1418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Murakami, R. Hayashi, T. Takana, K. H. Kwon, H. Ohigashi, and R. Safitri, “Suppression of dextran sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger sesquiterpene, and nimesulide: separately and in combination,” Biochemical Pharmacology, vol. 66, no. 7, pp. 1253–1261, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Oberhammer, J. W. Wilson, C. Dive et al., “Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation,” The EMBO Journal, vol. 12, no. 9, pp. 3679–3684, 1993. View at Google Scholar · View at Scopus
  95. J. L. Gooch and D. Yee, “Strain-specific differences in formation of apoptotic DNA ladders in MCF-7 breast cancer cells,” Cancer Letters, vol. 144, no. 1, pp. 31–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Zhao, Y. Yang, and J. Song, “Ceramide induces caspase-dependent and -independent apoptosis in A-431 cells,” Journal of Cellular Physiology, vol. 199, no. 1, pp. 47–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. W. K. Lee, M. Abouhamed, and F. Thévenod, “Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells,” The American Journal of Physiology: Renal Physiology, vol. 291, no. 4, pp. F823–F832, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. M. H. Kang and C. P. Reynolds, “BcI-2 Inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy,” Clinical Cancer Research, vol. 15, no. 4, pp. 1126–1132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. S. J. Riedl and G. S. Salvesen, “The apoptosome: signalling platform of cell death,” Nature Reviews Molecular Cell Biology, vol. 8, no. 5, pp. 405–413, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. J. R. Bertino, “Irinotecan for colorectal cancer,” Seminars in Oncology, vol. 24, pp. S18–S23, 1997. View at Google Scholar
  101. S. H. Inayat-Hussain, A. B. Osman, L. B. Din, and N. Taniguchi, “Altholactone, a novel styryl-lactone induces apoptosis via oxidative stress in human HL-60 leukemia cells,” Toxicology Letters, vol. 131, no. 3, pp. 153–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. P. S. Schwartz and D. M. Hockenbery, “Bcl-2-related survival proteins,” Cell Death and Differentiation, vol. 13, no. 8, pp. 1250–1255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. H. Zou, Y. Li, X. Liu, and X. Wang, “An APAF-1·cytochrome C multimeric complex is a functional apoptosome that activates procaspase-9,” The Journal of Biological Chemistry, vol. 274, no. 17, pp. 11549–11556, 1999. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Tinel and J. Tschopp, “The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress,” Science, vol. 304, no. 5672, pp. 843–846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. R. L. Noble, “The discovery of the vinca alkaloids—chemotherapeutic agents against cancer,” Biochemistry and Cell Biology, vol. 68, no. 12, pp. 1344–1351, 1990. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Stähblin, “Activity of a new glycosidic lignan derivative (VP 16-213) related to podophyllotoxin in experimental tumors,” European Journal of Cancer, vol. 9, no. 3, pp. 215–221, 1973. View at Publisher · View at Google Scholar · View at Scopus
  107. A. L. Harvey, “Medicines from nature: are natural products still relevant to drug discovery?” Trends in Pharmacological Sciences, vol. 20, no. 5, pp. 196–198, 1999. View at Publisher · View at Google Scholar · View at Scopus
  108. L. F. Liu, “DNA topoisomerase poisons as antitumor drugs,” Annual Review of Biochemistry, vol. 58, pp. 351–375, 1989. View at Publisher · View at Google Scholar · View at Scopus
  109. M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, and A. T. McPhail, “Plant antitumor agents, VI: the isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia,” Journal of the American Chemical Society, vol. 93, no. 9, pp. 2325–2327, 1971. View at Publisher · View at Google Scholar · View at Scopus
  110. G. J. Creemers, G. Bolis, M. Gore et al., “Topotecan, an active drug in the second-line treatment of epithelial ovarian cancer,” Journal of Clinical Oncology, vol. 14, no. 12, pp. 3056–3061, 1996. View at Google Scholar · View at Scopus
  111. L. F. Liu, S. D. Desai, T. K. Li, Y. Mao, M. Sun, and S. Sim, “Mechanism of action of camptothecin,” Annals of the New York Academy of Sciences, vol. 922, pp. 1–10, 2000. View at Google Scholar · View at Scopus