Table of Contents Author Guidelines Submit a Manuscript
Corrigendum

A corrigendum for this article has been published. To view the corrigendum, please click here.

BioMed Research International
Volume 2014, Article ID 564136, 17 pages
http://dx.doi.org/10.1155/2014/564136
Review Article

Synergistic Effects of Toxic Elements on Heat Shock Proteins

1Department of Biology, Government Post-Graduate College Asghar Mall, Rawalpindi, Pakistan
2Department of Natural Resource Engineering and Management, University of Kurdistan-Hawler Erbil, Kurdistan Region, Iraq
3Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan

Received 23 November 2013; Revised 24 May 2014; Accepted 17 June 2014; Published 20 July 2014

Academic Editor: Abhik Gupta

Copyright © 2014 Khalid Mahmood et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Wicherek and J. P. Oudinet, “Environment and health-studies using biomarkers,” Folia Medica Cracoviensia, vol. 38, no. 3-4, pp. 133–144, 1997. View at Google Scholar · View at Scopus
  2. M. Ponomarenko, I. Stepanenko, and N. Kolchanov, “Heat shock proteins,” in Brenner's Encyclopedia of Genetics, pp. 402–405, 2nd edition, 2013. View at Google Scholar
  3. F. A. Ritossa, “A new puffing pattern induced by temperature shock and DNP in drosophila,” Experientia, vol. 18, no. 12, pp. 571–573, 1962. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Tissieres, H. K. Mitchell, and U. M. Tracy, “Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs,” Journal of Molecular Biology, vol. 84, no. 3, pp. 389–398, 1974. View at Publisher · View at Google Scholar · View at Scopus
  5. S. P. Place and G. E. Hofmann, “Temperature interactions of the molecular chaperone Hsc70 from the eurythermal marine goby Gillichthys mirabilis,” Journal of Experimental Biology, vol. 204, no. 15, pp. 2675–2682, 2001. View at Google Scholar · View at Scopus
  6. S. Franzellitti and E. Fabbri, “Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors,” Biochemical and Biophysical Research Communications, vol. 336, no. 4, pp. 1157–1163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. N. Boone and M. M. Vijayan, “Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: effect of heat shock and heavy metal exposure,” Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, vol. 132, no. 2, pp. 223–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Singer, S. Zimmermann, and B. Sures, “Induction of heat shock proteins (hsp70) in the zebra mussel (Dreissena polymorpha) following exposure to platinum group metals (platinum, palladium and rhodium): comparison with lead and cadmium exposures,” Aquatic Toxicology, vol. 75, no. 1, pp. 65–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Warchałowska-Śliwa, M. Niklińska, A. Görlich, P. Michailova, and E. Pyza, “Heavy metal accumulation, heat shock protein expression and cytogenetic changes in Tetrix tenuicornis (L.) (Tetrigidae, Orthoptera) from polluted areas,” Environmental Pollution, vol. 133, no. 2, pp. 373–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. E. E. Deane and N. Y. S. Woo, “Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts,” Aquatic Toxicology, vol. 79, no. 1, pp. 9–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Low-Friedrich and W. Schoeppe, “Effects of calcium channel blockers on stress protein synthesis in cardiac myocytes,” Journal of Cardiovascular Pharmacology, vol. 17, no. 5, pp. 800–806, 1991. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Liu, K. S. Squibb, M. Akkerman, G. F. Nordberg, M. Lipsky, and B. A. Fowler, “Cytotoxicity, zinc protection, and stress protein induction in rat proximal tubule cells exposed to cadmium chloride in primary cell culture,” Renal Failure, vol. 18, no. 6, pp. 867–882, 1996. View at Google Scholar · View at Scopus
  13. S. Aït-Aïssa, J.-M. Porcher, A.-P. Arrigo, and C. Lambré, “Activation of the hsp70 promoter by environmental inorganic and organic chemicals: relationships with cytotoxicity and lipophilicity,” Toxicology, vol. 145, no. 2-3, pp. 147–157, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Wirth, E. Christians, C. Munaut, C. Dessy, J. M. Foidart, and P. Gustin, “Differential heat shock gene HSP70-1 response to toxicants revealed by in vivo study of lungs in transgenic mice,” Cell Stress Chaperones, vol. 7, pp. 387–395, 2002. View at Google Scholar
  15. F. Trautinger, I. Kindås-Mügge, R. M. Knobler, and H. Hönigsmann, “Stress proteins in the cellular response to ultraviolet radiation,” Journal of Photochemistry and Photobiology B: Biology, vol. 35, no. 3, pp. 141–148, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Lin, M. Opler, M. Head, M. Blank, and R. Goodman, “Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells,” Journal of Cellular Biochemistry, vol. 66, pp. 482–488, 1997. View at Publisher · View at Google Scholar
  17. H. Yamada and S. Koizumi, “Effect of ultraviolet irradiation on the protein synthesis of human skin cells: a study with a monochromatic ultraviolet irradiation apparatus,” Industrial Health, vol. 41, no. 2, pp. 88–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Yamada, M. Murata, K. Suzuki, and S. Koizumi, “Ultraviolet irradiation increases the sensitivity of cultured human skin cells to cadmium probably through the inhibition of metallothionein gene expression,” Toxicology and Applied Pharmacology, vol. 200, no. 3, pp. 251–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. C. G. Cranfield, A. Dawe, V. Karloukovski, R. E. Dunin-Borkowski, D. de Pomerai, and J. Dobson, “Biogenic magnetite in the nematode Caenorhabditis elegans,” Proceedings of the Royal Society, vol. 271, supplement 6, pp. S436–S439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Abe, T. Konishi, T. Katoh et al., “Induction of heat shock 70 mRNA by cadmium is mediated by glutathione suppressive and non-suppressive triggers,” Biochimica et Biophysica Acta, vol. 1201, no. 1, pp. 29–36, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Abe, K. Yamamura, S. Gotoh, M. Kashimura, and K. Higashi, “Concentration-dependent differential effects of N-acetyl-L-cysteine on the expression of HSP70 and metallothionein genes induced by cadmium in human amniotic cells,” Biochimica et Biophysica Acta: General Subjects, vol. 1380, no. 1, pp. 123–132, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Guo, A. Ersoz, D. A. Butterfield, and M. P. Mattson, “Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: Preservation of glucose and glutamate transport and mitochondrial function after exposure to amyloid β-peptide, iron, and 3-nitropropionic acid,” Journal of Neurochemistry, vol. 75, no. 1, pp. 314–320, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. G. de Boeck, B. de Wachter, A. Vlaeminck, and R. Blust, “Effect of cortisol treatment and/or sublethal copper exposure on copper uptake and heat shock protein levels in common carp, Cyprinus carpio,” Environmental Toxicology and Chemistry, vol. 22, pp. 1122–1126, 2003. View at Publisher · View at Google Scholar
  24. H. B. Chen, Y. Chan, A. C. Hung, Y. Tsai, and S. H. Sun, “Elucidation of ATP-stimulated stress protein expression of RBA-2 type-2 astrocytes: ATP potentiate HSP60 and Cu/Zn SOD expression and stimulates pI shift of peroxiredoxin II,” Journal of Cellular Biochemistry, vol. 97, no. 2, pp. 314–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. R. Nevins, “Induction of the synthesis of a 70,000 dalton mammalian heat shock protein by the adenovirus E1A gene product,” Cell, vol. 29, no. 3, pp. 913–919, 1982. View at Publisher · View at Google Scholar · View at Scopus
  26. J. L. Zimmerman, W. Petri, and M. Meselson, “Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock,” Cell, vol. 32, no. 4, pp. 1161–1170, 1983. View at Publisher · View at Google Scholar · View at Scopus
  27. B. J. Wu and R. I. Morimoto, “Transcription of the human hsp70 gene is induced by serum stimulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 18, pp. 6070–6074, 1985. View at Publisher · View at Google Scholar · View at Scopus
  28. P. M. Filipe and A. C. Fernandes, “Stress proteins,” Acta medica portuguesa, vol. 7, no. 12, pp. 711–715, 1994. View at Google Scholar · View at Scopus
  29. E. Mocchegiani, L. Costarelli, R. Giacconi et al., “Nutrient-gene interaction in ageing and successful ageing. A single nutrient (zinc) and some target genes related to inflammatory/immune response,” Mechanisms of Ageing and Development, vol. 127, no. 6, pp. 517–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. I. Morimoto and M. Gabriella Santoro, “Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection,” Nature Biotechnology, vol. 16, no. 9, pp. 833–838, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Kantengwa and B. S. Polla, “Phagocytosis of Staphylococcus aureus induces a selective stress response in human monocytes-macrophages (Mφ): modulation by Mφ differentiation and by iron,” Infection and Immunity, vol. 61, no. 4, pp. 1281–1287, 1993. View at Google Scholar · View at Scopus
  32. A. Neuer, S. D. Spandorfer, P. Giraldo, S. Dieterle, Z. Rosenwaks, and S. S. Witkin, “The role of heat shock proteins in reproduction,” Human Reproduction Update, vol. 6, no. 2, pp. 149–159, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Pospíšil and J. Čanderle, “Heat shock protein (hsp60) of chlamydial origin and fertility disturbances,” Ceska Gynekologie, vol. 68, no. 3, pp. 186–190, 2003. View at Google Scholar · View at Scopus
  34. V. Ramaglia, G. M. Harapa, N. White, and L. T. Buck, “Bacterial infection and tissue-specific Hsp72, -73 and -90 expression in western painted turtles,” Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, vol. 138, no. 2, pp. 139–148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Kroes, K. Abravaya, J. Seidenfeld, and R. I. Morimoto, “Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 11, pp. 4825–4829, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Hu, W. Wu, C. E. Verschraegen et al., “Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor,” Proteomics, vol. 3, no. 10, pp. 1904–1911, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Brochu, A. Halmeur, and M. Ouellette, “The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania,” Cell Stress and Chaperones, vol. 9, no. 3, pp. 294–303, 2004. View at Google Scholar · View at Scopus
  38. B. M. Sanders, L. S. Martin, S. R. Howe, W. G. Nelson, E. S. Hegre, and D. K. Phelps, “Tissue-specific differences in accumulation of stress proteins in Mytilus edulis exposed to a range of copper concentrations,” Toxicology and Applied Pharmacology, vol. 125, no. 2, pp. 206–213, 1994. View at Publisher · View at Google Scholar · View at Scopus
  39. J. E. Kammenga, M. S. J. Arts, and W. J. M. Oude-Breuil, “HSP60 as a potential biomarker of toxic stress in the nematode Plectus acuminatus,” Archives of Environmental Contamination and Toxicology, vol. 34, no. 3, pp. 253–258, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. B. J. Cochrane, R. B. Irby, and T. W. Snell, “Effects of copper and tributyltin on stress protein abundance in the rotifer Brachionus plicatilis,” Comparative Biochemistry and Physiology C: Comparative, vol. 98, no. 2-3, pp. 385–390, 1991. View at Publisher · View at Google Scholar · View at Scopus
  41. B. M. Sanders and L. S. Martin, “Stress proteins as biomarkers of contaminant exposure in archived environmental samples,” Science of the Total Environment, vol. 139-140, pp. 459–470, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Porte, X. Biosca, M. Solé, and J. Albaigés, “The integrated use of chemical analysis, cytochrome P450 and stress proteins in mussels to assess pollution along the Galician coast (NW Spain),” Environmental Pollution, vol. 112, no. 2, pp. 261–268, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Werner, S. J. Teh, S. Datta, X. Lu, and T. M. Young, “Biomarker responses in Macoma nasuta (Bivalvia) exposed to sediments from northern San Francisco Bay,” Marine Environmental Research, vol. 58, no. 2–5, pp. 299–304, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. H. C. Schröder, R. Batel, H. M. A. Hassanein et al., “Correlation between the level of the potential biomarker, heat-shock protein, and the occurrence of DNA damage in the dab, Limanda limanda: a field study in the North Sea and the English Channel,” Marine Environmental Research, vol. 49, no. 3, pp. 201–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Heresztyn and B. C. Nicholson, “Heat shock protein 70 levels in rainbow trout primary epidermal cultures in response to 2,4-dichloroaniline exposure: a novel in vitro aquatic toxicity marker,” Environmental Toxicology, vol. 16, no. 3, pp. 253–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Fulladosa, E. Deane, A. H. Y. Ng, N. Y. S. Woo, J. C. Murat, and I. Villaescusa, “Stress proteins induced by exposure to sublethal levels of heavy metals in sea bream (Sparus sarba) blood cells,” Toxicology in Vitro, vol. 20, no. 1, pp. 96–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Guizani, Y. Nogoshi, F. Ben Fredj, J. Han, H. Isoda, and N. Funamizu, “Heat shock protein 47 stress responses in Chinese hamster ovary cells exposed to raw and reclaimed wastewater,” Journal of Environmental Monitoring, vol. 14, no. 2, pp. 492–498, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Bierkens, J. Maes, and F. Vander Plaetse, “Dose-dependent induction of heat shock protein 70 synthesis in Raphidocelis subcapitata following exposure environmental pollutants,” Environmental Pollution, vol. 101, no. 1, pp. 91–97, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. H. E. Ireland, S. J. Harding, G. A. Bonwick, M. Jones, C. J. Smith, and J. H. Williams, “Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor,” Biomarkers, vol. 9, no. 2, pp. 139–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. J. S. Miller-Morey and F. M. Van Dolah, “Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis,” Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, vol. 138, no. 4, pp. 493–505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. J. E. Kammenga, R. Dallinger, M. H. Donker et al., “Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment,” Reviews of Environmental Contamination and Toxicology, vol. 164, pp. 93–147, 2000. View at Google Scholar · View at Scopus
  52. M. S. J. Arts, R. O. Schill, T. Knigge, H. Eckwert, J. E. Kammenga, and H. Köhler, “Stress proteins (hsp70, hsp60) induced in isopods and nematodes by field exposure to metals in a gradient near Avonmouth, UK,” Ecotoxicology, vol. 13, no. 8, pp. 739–755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Nadeau, S. Corneau, I. Plante, G. Morrow, and R. M. Tanguay, “Evaluation for HSP70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris,” Cell Stress Chaperones, vol. 6, pp. 153–163, 2001. View at Publisher · View at Google Scholar
  54. J. Homa, E. Olchawa, S. R. Stürzenbaum, A. John Morgan, and B. Plytycz, “Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions,” Environmental Pollution, vol. 135, no. 2, pp. 275–280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. L. H. Damelin, “Hormesis: a stress response in cells exposed to low levels of heavy metals,” Human and Experimental Toxicology, vol. 19, no. 7, pp. 420–430, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. C. A. Mandon, C. Diaz, A.-P. Arrigo, and L. J. Blum, “Chemical stress sensitive luminescent human cells: molecular biology approach using inducible Drosophila melanogaster hsp22 promoter,” Biochemical and Biophysical Research Communications, vol. 335, no. 2, pp. 536–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Nazir, D. K. Saxena, and D. Kar Chowdhuri, “Induction of hsp70 in transgenic Drosophila: biomarker of exposure against phthalimide group of chemicals,” Biochimica et Biophysica Acta—General Subjects, vol. 1621, no. 2, pp. 218–225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Mukhopadhyay, A. Nazir, D. K. Saxena, and D. K. Chowdhuri, “Toxicity of cypermethrin: Hsp70 as a biomarker of response in transgenic Drosophila,” Biomarkers, vol. 7, no. 6, pp. 501–510, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Mukhopadhyay, D. K. Saxena, and D. K. Chowdhuri, “Hazardous effects of effluent from the chrome plating industry: 70 kDa heat shock protein expression as a marker of cellular damage in transgenic Drosophila melanogaster (hsp70-lacZ),” Environmental Health Perspectives, vol. 111, no. 16, pp. 1926–1932, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. P. H. Krone, S. R. Blechinger, T. G. Evans, J. A. Ryan, E. J. Noonan, and L. E. Hightower, “Use of fish liver PLHC-1 cells and zebrafish embryos in cytotoxicity assays,” Methods, vol. 35, no. 2, pp. 176–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. S. H. Seok, J. H. Park, M. W. Baek et al., “Specific activation of the human HSP70 promoter by copper sulfate in mosaic transgenic zebrafish,” Journal of Biotechnology, vol. 126, no. 3, pp. 406–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. S. C. Gupta, A. Sharma, M. Mishra, R. K. Mishra, and D. K. Chowdhuri, “Heat shock proteins in toxicology: how close and how far?” Life Sciences, vol. 86, no. 11-12, pp. 377–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. C. Gupta, H. R. Siddique, N. Mathur, R. K. Mishra, D. K. Saxena, and D. K. Chowdhuri, “Adverse effect of organophosphate compounds, dichlorvos and chlorpyrifos in the reproductive tissues of transgenic Drosophila melanogaster: 70 kDa heat shock protein as a marker of cellular damage,” Toxicology, vol. 238, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. S. C. Gupta, H. R. Siddique, N. Mathur et al., “Induction of hsp70, alterations in oxidative stress markers and apoptosis against dichlorvos exposure in transgenic Drosophila melanogaster: modulation by reactive oxygen species,” Biochimica et Biophysica Acta—General Subjects, vol. 1770, no. 9, pp. 1382–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. H. R. Siddique, S. C. Gupta, K. Mitra et al., “Adverse effect of tannery waste leachates in transgenic Drosophila melanogaster: role of ROS in modulation of HSP70, oxidative stress and apoptosis,” Journal of Applied Toxicology, vol. 28, no. 6, pp. 734–748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. H. R. Siddique, K. Mitra, V. K. Bajpai, K. Ravi Ram, D. K. Saxena, and D. K. Chowdhuri, “Hazardous effect of tannery solid waste leachates on development and reproduction in Drosophila melanogaster: 70 kDa heat shock protein as a marker of cellular damage,” Ecotoxicology and Environmental Safety, vol. 72, no. 6, pp. 1652–1662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Bhargav, M. Pratap Singh, R. C. Murthy et al., “Toxic potential of municipal solid waste leachates in transgenic Drosophila melanogaster (hsp70-lacZ): hsp70 as a marker of cellular damage,” Ecotoxicology and Environmental Safety, vol. 69, no. 2, pp. 233–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. M. P. Singh, M. M. K. Reddy, N. Mathur, D. K. Saxena, and D. K. Chowdhuri, “Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: role of ROS generation,” Toxicology and Applied Pharmacology, vol. 235, no. 2, pp. 226–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. I. Nisamedtinov, G. G. Lindsey, R. Karreman et al., “The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p,” FEMS Yeast Research, vol. 8, no. 6, pp. 829–838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. L. Wu, X. Pan, S. P. Mudumana, H. Wang, P. W. Kee, and Z. Gong, “Development of a heat shock inducible gfp transgenic zebrafish line by using the zebrafish hsp27 promoter,” Gene, vol. 408, no. 1-2, pp. 85–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. F. A. C. Wieganta, J. E. M. Souren, J. van Rijn, and R. van Wijk, “Stressor-specific induction of heat shock proteins in rat hepatoma cells,” Toxicology, vol. 94, no. 1–3, pp. 143–159, 1994. View at Publisher · View at Google Scholar · View at Scopus
  72. P. E. Mirkes, B. Doggett, and L. Cornel, “Induction of a heat shock response (HSP 72) in rat embryos exposed to selected chemical teratogens,” Teratology, vol. 49, no. 2, pp. 135–142, 1994. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Croute, B. Beau, C. Arrabit et al., “Pattern of stress protein expression in human lung cell-line A549 after short- or long-term exposure to cadmium,” Environmental Health Perspectives, vol. 108, no. 1, pp. 55–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Aït-Aïssa, O. Ausseil, O. Palluel, E. Vindimian, J. Garnier-Laplace, and J. Porcher, “Biomarker responses in juvenile rainbow trout (Oncorhynchus mykiss) after single and combined exposure to low doses of cadmium, zinc, PCB77 and 17β-oestradiol,” Biomarkers, vol. 8, no. 6, pp. 491–508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. S. M. Efremova, B. A. Margulis, I. V. Guzhova et al., “Heat shock protein Hsp70 expression and DNA damage in Baikalian sponges exposed to model pollutants and wastewater from Baikalsk Pulp and Paper Plant,” Aquatic Toxicology, vol. 57, no. 4, pp. 267–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Agell, M. Uriz, E. Cebrian, and R. Martí, “Does stress protein induction by copper modify natural toxicity in sponges?” Environmental Toxicology and Chemistry, vol. 20, no. 11, pp. 2588–2593, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Agell, X. Turon, S. De Caralt, S. López-Legentil, and M. J. Uriz, “Molecular and organism biomarkers of copper pollution in the ascidian Pseudodistoma crucigaster,” Marine Pollution Bulletin, vol. 48, no. 7-8, pp. 759–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. T. N. Guecheva, B. Erdtmann, M. S. Benfato, and J. A. P. Henriques, “Stress protein response and catalase activity in freshwater planarian Dugesia (Girardia) schubarti exposed to copper,” Ecotoxicology and Environmental Safety, vol. 56, no. 3, pp. 351–357, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. D. Webb and M. M. Gagnon, “The value of stress protein 70 as an environmental biomarker of fish health under field conditions,” Environmental Toxicology, vol. 24, no. 3, pp. 287–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Urani, P. Melchioretto, F. Morazzoni, C. Canevali, and M. Camatini, “Copper and zinc uptake and HSP70 expression in HepG2 cells,” Toxicology in Vitro, vol. 15, no. 4-5, pp. 497–502, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. S. N. Pedersen, A.-K. Lundebye, and M. H. Depledge, “Field application of metallothionein and stress protein biomarkers in the shore crab (Carcinus maenas) exposed to trace metals,” Aquatic Toxicology, vol. 37, no. 2-3, pp. 183–200, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. J. M. Matz, M. J. Blake, J. T. Saari, and A. M. Bode, “Dietary copper deficiency reduces heat shock protein expression in cardiovascular tissues,” FASEB Journal, vol. 8, no. 1, pp. 97–102, 1994. View at Google Scholar · View at Scopus
  83. P. F. La Porte, “Mytilus trossulus hsp70 as a biomarker for arsenic exposure in the marine environment: laboratory and real-world results,” Biomarkers, vol. 10, no. 6, pp. 417–428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. W. F. Salminen Jr., R. Voellmy, and S. M. Roberts, “Protection against hepatotoxicity by a single dose of amphetamine: the potential role of heat shock protein induction,” Toxicology and Applied Pharmacology, vol. 147, no. 2, pp. 247–258, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. F. A. C. Wiegant, J. van Rijn, and R. van Wijk, “Enhancement of the stress response by minute amounts of cadmium in sensitized Reuber H35 hepatoma cells,” Toxicology, vol. 116, no. 1–3, pp. 27–37, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. P. L. Goering, B. R. Fisher, B. T. Noren, A. Papaconstantinou, J. L. Rojko, and R. J. Marler, “Mercury induces regional and cell-specific stress protein expression in rat kidney,” Toxicological Sciences, vol. 53, no. 2, pp. 447–457, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Furuya, H. Kumagai, and A. Hishida, “Acquired resistance to rechallenge injury with uranyl acetate in LLC-PK1 cells,” Journal of Laboratory and Clinical Medicine, vol. 129, no. 3, pp. 347–355, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Honda and M. Sudo, “Resistance to uranyl acetate-induced acute renal failure in rabbits: renal function and morphology,” in Acute Renal Failure, H. E. Eliahou, Ed., p. 105, John Libbey, London, UK, 1982. View at Google Scholar
  89. S. Mizuno, K. Fujita, R. Furuy et al., “Association of HSP73 with the acquired resistance to uranyl acetate-induced acute renal failure,” Toxicology, vol. 117, no. 2-3, pp. 183–191, 1997. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Liu, R. Lightfoot, and J. L. Stevens, “Activation of heat shock factor by alkylating agents is triggered by glutathione depletion and oxidation of protein thiols,” Journal of Biological Chemistry, vol. 271, no. 9, pp. 4805–4812, 1996. View at Publisher · View at Google Scholar · View at Scopus
  91. L. A. Opanashuk and J. N. Finkelstein, “Relationship of lead-induced proteins to stress response proteins in astroglial cells,” Journal of Neuroscience Research, vol. 42, no. 5, pp. 623–632, 1995. View at Publisher · View at Google Scholar · View at Scopus
  92. F. A. C. Wiegant, I. Y. Malyshev, A. L. Kleschyov, E. Van Faassen, and A. F. Vanin, “Dinitrosyl iron complexes with thiol-containing ligands and S-nitroso-D,L-penicillamine as inductors of heat shock protein synthesis in H35 hepatoma cells,” FEBS Letters, vol. 455, no. 1-2, pp. 179–182, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Lukkari, M. Taavitsainen, M. Soimasuo, A. Oikari, and J. Haimi, “Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure,” Environmental Pollution, vol. 129, no. 3, pp. 377–386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Scofield, R. T. Bowyer, and L. K. Duffy, “Baseline levels of Hsp 70, a stress protein and biomarker, in halibut from the Cook Inlet region of Alaska,” Science of the Total Environment, vol. 226, no. 1, pp. 85–88, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. P. L. Klerks and J. S. Weis, “Genetic adaptation to heavy metals in aquatic organisms: a review,” Environmental Pollution, vol. 45, no. 3, pp. 173–205, 1987. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Shpund and D. Gershon, “Alterations in the chaperone activity of HSP70 in aging organisms,” Archives of Gerontology and Geriatrics, vol. 24, no. 2, pp. 125–131, 1997. View at Publisher · View at Google Scholar · View at Scopus
  97. K. A. Hoekstra, D. V. Godin, J. Kurtu, and K. M. Cheng, “Effects of oxidant-induced injury on heme oxygenase and glutathione in cultured aortic endothelial cells from atherosclerosis-susceptible and -resistant Japanese quail,” Molecular and Cellular Biochemistry, vol. 254, no. 1-2, pp. 61–71, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. P. D. B. Filzek, D. J. Spurgeon, G. Broll et al., “Pedological characterisation of sites along a transect from a primary cadmium/lead/zinc smelting works,” Ecotoxicology, vol. 13, no. 8, pp. 725–737, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Ikemoto, T. Kunito, H. Tanaka, N. Baba, N. Miyazaki, and S. Tanabe, “Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury, silver, copper, zinc, and cadmium in liver,” Archives of Environmental Contamination and Toxicology, vol. 47, no. 3, pp. 402–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. T. E. Eichler, R. F. Ransom, and W. E. Smoyer, “Differential induction of podocyte heat shock proteins by prolonged single and combination toxic metal exposure,” Toxicological Sciences, vol. 84, no. 1, pp. 120–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. N. Saydam, F. Steiner, O. Georgiev, and W. Schaffner, “Heat and heavy metal stress synergize to mediate transcriptional hyperactivation by metal-responsive transcription factor MTF-1,” The Journal of Biological Chemistry, vol. 278, no. 34, pp. 31879–31883, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Fulladosa, F. Delmas, L. Jun, I. Villaescusa, and J. C. Murat, “Cellular stress induced in cultured human cells by exposure to sludge extracts from water treatment plants,” Ecotoxicology and Environmental Safety, vol. 53, no. 1, pp. 134–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Luedeking and A. Koehler, “Regulation of expression of multixenobiotic resistance (MXR) genes by environmental factors in the blue mussel Mytilus edulis,” Aquatic Toxicology, vol. 69, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Verslycke, M. Vangheluwe, D. Heijerick, K. de Schamphelaere, P. van Sprang, and C. R. Janssen, “The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea: Mysidacea) under changing salinity,” Aquatic Toxicology, vol. 64, no. 3, pp. 307–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Triebskorn, S. Adam, H. Casper et al., “Biomarkers as diagnostic tools for evaluating effects of unknown past water quality conditions on stream organisms,” Ecotoxicology, vol. 11, pp. 451–465, 2002. View at Google Scholar
  106. I. Werner and D. E. Hinton, “Spatial profiles of hsp70 proteins in Asian clam (Potamocorbula amurensis) in Northern San Francisco Bay may be linked to natural rather than anthropogenic stressors,” Marine Environmental Research, vol. 50, no. 1–5, pp. 379–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. D. Tran, J.-P. Bourdineaud, J.-C. Massabuau, and J. Garnier-Laplace, “Modulation of uranium bioaccumulation by hypoxia in the freshwater clam Corbicula fluminea: induction of multixenobiotic resistance protein and heat shock protein 60 in gill tissues,” Environmental Toxicology and Chemistry, vol. 24, no. 9, pp. 2278–2284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Bierkens, W. van de Perre, and J. Maes, “Effect of different environmental variables on the synthesis of Hsp70 in Raphidocelis subcapitata,” Comparative Biochemistry and Physiology: A Molecular & Integrative Physiology, vol. 120, no. 1, pp. 29–34, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Bodin, T. Burgeot, J. Y. Stanisière et al., “Seasonal variations of a battery of biomarkers and physiological indices for the mussel Mytilus galloprovincialis transplanted into the northwest Mediterranean Sea,” Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, vol. 138, no. 4, pp. 411–427, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. M. S. Hossain and Y. S. A. Khan, “Trace metals in Penaeid shrimp and Spiny lobster from the Bay of Bengal,” ScienceAsia, vol. 27, pp. 165–168, 2001. View at Publisher · View at Google Scholar
  111. B. Hamer, D. P. Hamer, W. E. G. Müller, and R. Batel, “Stress-70 proteins in marine mussel Mytilus galloprovincialis as biomarkers of environmental pollution: a field study,” Environment International, vol. 30, no. 7, pp. 873–882, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Pyza, P. Mak, P. Kramarz, and R. Laskowski, “Heat shock proteins (HSP70) as biomarkers in ecotoxicological studies,” Ecotoxicology and Environmental Safety, vol. 38, no. 3, pp. 244–251, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. J. L. Yoo and D. M. Janz, “Tissue-specific HSP70 levels and reproductive physiological responses in fishes inhabiting a metal-contaminated creek,” Archives of Environmental Contamination and Toxicology, vol. 45, no. 1, pp. 110–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. H. Ovelgonne, M. Bitorina, and R. van Wijk, “Stressor-specific activation of heat shock genes in H35 rat hepatoma cells,” Toxicology and Applied Pharmacology, vol. 135, no. 1, pp. 100–109, 1995. View at Publisher · View at Google Scholar · View at Scopus
  115. J. H. Ovelgönne, J. E. M. Souren, F. A. C. Wiegant, and R. van Wijk, “Relationship between cadmium-induced expression of heatshock genes, inhibition of protein synthesis and cell death,” Toxicology, vol. 99, no. 1-2, pp. 19–30, 1995. View at Publisher · View at Google Scholar · View at Scopus
  116. S. R. Stürzenbaum, M. S. J. Arts, and J. E. Kammenga, “Molecular cloning and characterization of Cpn60 in the free-living nematode Plectus acuminatus,” Cell Stress and Chaperones, vol. 10, no. 2, pp. 79–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. P. L. Goering, C. L. Kish, and B. R. Fisher, “Stress protein synthesis induced by cadmium-cysteine in rat kidney,” Toxicology, vol. 85, no. 1, pp. 25–39, 1993. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Murata, P. Gong, K. Suzuki, and S. Koizumi, “Differential metal response and regulation of human heavy metal-inducible genes,” Journal of Cellular Physiology, vol. 180, pp. 105–113, 1999. View at Publisher · View at Google Scholar
  119. J. W. Bauman, J. Liu, and C. D. Klaassen, “Production of metallothionein and heat-shock proteins in response to metals,” Fundamental and Applied Toxicology, vol. 21, no. 1, pp. 15–22, 1993. View at Publisher · View at Google Scholar · View at Scopus
  120. K. S. Ali, L. Dorgai, M. Ábrahám, and E. Hermesz, “Tissue- and stressor-specific differential expression of two hsc70 genes in carp,” Biochemical and Biophysical Research Communications, vol. 307, no. 3, pp. 503–509, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. N. Hfaiedh, M. S. Allagui, A. El Feki et al., “Effects of nickel poisoning on expression pattern of the 72/73 and 94 kDa stress proteins in rat organs and in the COS-7, HepG2, and A549 cell lines,” Journal of Biochemical and Molecular Toxicology, vol. 19, no. 1, pp. 12–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. C. A. Downs, J. E. Fauth, and C. M. Woodley, “Assessing the health of grass shrimp (Palaeomonetes pugio) exposed to natural and anthropogenic stressors: a molecular biomarker system,” Marine Biotechnology, vol. 3, no. 4, pp. 380–397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. C. A. Downs, R. T. Dillon Jr., J. E. Fauth, and C. M. Woodley, “A molecular biomarker system for assessing the health of gastropods (Ilyanassa obsoleta) exposed to natural and anthropogenic stressors,” Journal of Experimental Marine Biology and Ecology, vol. 259, no. 2, pp. 189–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. W. M. de Coen and C. R. Janssen, “A multivariate biomarker-based model predicting population-level responses of Daphnia magna,” Environmental Toxicology and Chemistry, vol. 22, no. 9, pp. 2195–2201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. L. H. An, K. Lei, and B. H. Zheng, “Use of heat shock protein mRNA expressions as biomarkers in wild crucian carp for monitoring water quality,” Environmental Toxicology and Pharmacology, vol. 37, no. 1, pp. 248–255, 2014. View at Google Scholar
  126. R. Guo, M. A. Lee, and J. S. Ki, “Different transcriptional responses of heat shock protein 70/90 in the marine diatom Ditylum brightwellii exposed to metal compounds and endocrine-disrupting chemicals,” Chemosphere, vol. 92, no. 5, pp. 535–543, 2013. View at Publisher · View at Google Scholar · View at Scopus
  127. H. H. Liu, J. Y. He, C. F. Chi, and J. Shao, “Differential HSP70 expression in Mytilus coruscus under various stressors,” Gene, vol. 543, no. 1, pp. 166–117, 2014. View at Publisher · View at Google Scholar
  128. S. Rajeshkumar, J. Mini, and N. Munuswamy, “Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of Milk fish (Chanos chanos) of Kaattuppalli Island, Chennai, India,” Ecotoxicology and Environmental Safety, vol. 98, pp. 8–18, 2013. View at Publisher · View at Google Scholar
  129. L. Luo, C. Ke, X. Guo, B. Shi, and M. Huang, “Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary,” Fish & Shellfish Immunology, vol. 38, no. 2, pp. 318–329, 2014. View at Google Scholar
  130. B. D. Moffat and T. W. Snell, “Rapid toxicity assessment using an in vivo enzyme test for Brachionus plicatilis (rotifera),” Ecotoxicology and Environmental Safety, vol. 30, no. 1, pp. 47–53, 1995. View at Publisher · View at Google Scholar · View at Scopus
  131. P. Michailova, N. Petrova, S. Bovero, G. Sella, and L. Ramella, “Structural and functional rearrangements in polytene chromosomes of Chironomids (Diptera) as biomarkers for heavy metal pollution in aquatic ecosystems,” in Proceedings of the Interanational Conference on Heavy Metals in the Environment, pp. 70–79, University of Michigan, Ann Arbor, Mich, USA, 2000.
  132. P. Li, X. Xiong, G. Yang, W. Liu, H. Xu, and P. Tai, “Application of terrestrial invertebrates biomarkers in soil pollution ecology study,” Chinese Journal of Applied Ecology, vol. 14, no. 12, pp. 2347–2350, 2003. View at Google Scholar · View at Scopus
  133. J. G. Bundy, D. J. Spurgeon, C. Svendsen et al., “Environmental metabonomics: applying combination biomarker analysis in earthworms at a metal contaminated site,” Ecotoxicology, vol. 13, no. 8, pp. 797–806, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. M. P. Cajaraville, M. J. Bebianno, J. Blasco, C. Porte, C. Sarasquete, and A. Viarengo, “The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach,” Science of the Total Environment, vol. 247, no. 2-3, pp. 295–311, 2000. View at Publisher · View at Google Scholar · View at Scopus
  135. C. Wagner, R. Steffen, C. Koziol et al., “Apoptosis in marine sponges: a biomarker for environmental stress (cadmium and bacteria),” Marine Biology, vol. 131, no. 3, pp. 411–421, 1998. View at Publisher · View at Google Scholar · View at Scopus
  136. G. Wilczek, “Apoptosis and biochemical biomarkers of stress in spiders from industrially polluted areas exposed to high temperature and dimethoate,” Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, vol. 141, no. 2, pp. 194–206, 2005. View at Publisher · View at Google Scholar · View at Scopus