Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 572183, 12 pages
http://dx.doi.org/10.1155/2014/572183
Research Article

Evaluation of Human Amniotic Membrane as a Wound Dressing for Split-Thickness Skin-Graft Donor Sites

1Department of Oral and Maxillofacial Surgery, Munich University of Technology, Ismaninger Straße 22, 81675 Munich, Germany
2Clinic for Swine, Faculty of Veterinary Medicine, Ludwig-Maximilians-University of Munich, Sonnenstraße 16/A106, 85764 Oberschleissheim, Germany
3Department of Pathology, Munich University of Technology, Ismaninger Straße 22, 81675 Munich, Germany
4Department of Plastic, Reconstructive and Aesthetic Surgery, European Medical School at the Carl von Ossietzky University of Oldenburg, Evangelisches Krankenhaus, Steinweg 13–15, 26122 Oldenburg, Germany
5Red Cross Blood Transfusion Service of Upper Austria/Austrian Cluster for Tissue Regeneration, Krankenhausstrasse 7, 4017 Linz, Austria

Received 10 February 2014; Revised 24 April 2014; Accepted 12 May 2014; Published 9 June 2014

Academic Editor: Iva Dekaris

Copyright © 2014 Denys J. Loeffelbein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Davis, “Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital,” Johns Hopkins Hospital Report, vol. 15, pp. 307–310, 1910. View at Google Scholar
  2. A. B. Walker, D. R. Cooney, and J. E. Allen, “Use of fresh amnion as a burn dressing,” Journal of Pediatric Surgery, vol. 12, no. 3, pp. 391–395, 1977. View at Google Scholar · View at Scopus
  3. J. O. Kucan, M. C. Robson, and R. W. Parsons, “Amniotic membranes as dressings following facial dermabrasian,” Annals of Plastic Surgery, vol. 8, no. 6, pp. 523–527, 1982. View at Google Scholar · View at Scopus
  4. S. H. Lee and S. C. Tseng, “Amniotic membrane transplantation for persistent epithelial defects with ulceration,” The American Journal of Ophthalmology, vol. 123, no. 3, pp. 303–312, 1997. View at Google Scholar · View at Scopus
  5. D. Meller, M. Pauklin, H. Thomasen, H. Westekemper, and K.-P. Steuhl, “Amniotic membrane transplantation in the human eye,” Deutsches Ärzteblatt International, vol. 108, no. 14, pp. 243–248, 2011. View at Google Scholar · View at Scopus
  6. M. Kubo, Y. Sonoda, R. Muramatsu, and M. Usui, “Immunogenicity of human amniotic membrane in experimental xenotransplantation,” Investigative Ophthalmology and Visual Science, vol. 42, no. 7, pp. 1539–1546, 2001. View at Google Scholar · View at Scopus
  7. J. I. Ahn, D. H. Lee, Y. H. Ryu et al., “Reconstruction of rabbit corneal epithelium on lyophilized amniotic membrane using the tilting dynamic culture method,” Artificial Organs, vol. 31, no. 9, pp. 711–721, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Rolfo, D. Giuffrida, M. C. Giuffrida, T. Todros, and A. E. Calogero, “New perspectives for prostate cancer treatment: in vitro inhibition of LNCaP and PC3 cell proliferation by amnion-derived mesenchymal stromal cells conditioned media,” Aging Male, vol. 17, no. 2, pp. 94–101, 2014. View at Publisher · View at Google Scholar
  9. R. E. Horch, A. M. Boos, Y. Quan et al., “Cancer research by means of tissue engineering—is there a rationale?” Journal of Cellular and Molecular Medicine, vol. 17, no. 10, pp. 1197–1206, 2013. View at Publisher · View at Google Scholar
  10. D. J. Loeffelbein, C. Baumann, M. Stoeckelhuber et al., “Amniotic membrane as part of a skin substitute for full-thickness wounds: an experimental evaluation in a porcine model,” Journal of Biomedical Materials Research B: Applied Biomaterials, vol. 100, no. 5, pp. 1245–1256, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Druecke, E. N. Lamme, S. Hermann et al., “Modulation of scar tissue formation using different dermal regeneration templates in the treatment of experimental full-thickness wounds,” Wound Repair and Regeneration, vol. 12, no. 5, pp. 518–527, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Rommel, N. H. Rohleder, C. Gabriel et al., “Secondary correction of posttraumatic orbital wall adhesions by membranes laminated with amniotic membrane,” The British Journal of Oral and Maxillofacial Surgery, vol. 51, no. 8, pp. e224–e229, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Wolbank, F. Hildner, H. Redl, M. Van Griensven, C. Gabriel, and S. Hennerbichler, “Impact of human amniotic membrane preparation on release of angiogenic factors,” Journal of Tissue Engineering and Regenerative Medicine, vol. 3, no. 8, pp. 651–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Hao, D. H. Ma, D. G. Hwang, W. S. Kim, and F. Zhang, “Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane,” Cornea, vol. 19, no. 3, pp. 348–352, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Solomon, M. Rosenblatt, D. Monroy, Z. Ji, S. C. Pflugfelder, and S. C. G. Tseng, “Suppression of interleukin 1α and interleukin 1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix,” The British Journal of Ophthalmology, vol. 85, no. 4, pp. 444–449, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. C. Tseng, D. Q. Li, and X. Ma, “Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix,” Journal of Cellular Physiology, vol. 179, no. 3, pp. 325–335, 1999. View at Google Scholar
  17. I. Šplíchal and I. Trebichavský, “Cytokines and other important inflammatory mediators in gestation and bacterial intraamniotic infections,” Folia Microbiologica, vol. 46, no. 4, pp. 345–351, 2001. View at Google Scholar · View at Scopus
  18. T. G. Kanyshkova, V. N. Buneva, and G. A. Nevinsky, “Lactoferrin and its biological functions,” Biochemistry (Moscow), vol. 66, no. 1, pp. 1–7, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Lo and E. Pope, “Amniotic membrane use in dermatology,” International Journal of Dermatology, vol. 48, no. 9, pp. 935–940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Ladin, W. L. Garner, D. J. Smith, and Jr., “Excessive scarring as a consequence of healing,” Wound Repair and Regeneration, vol. 3, no. 1, pp. 6–14, 1995. View at Publisher · View at Google Scholar
  21. I. F. Muir, “On the nature keloid and hypertrophic scars,” The British Journal of Plastic Surgery, vol. 43, no. 1, pp. 61–69, 1990. View at Google Scholar · View at Scopus
  22. J. S. Kim, J. C. Kim, B. K. Na, J. M. Jeong, and C. Y. Song, “Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn,” Experimental Eye Research, vol. 70, no. 3, pp. 329–337, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Desmoulière, C. Chaponnier, and G. Gabbiani, “Tissue repair, contraction, and the myofibroblast,” Wound Repair and Regeneration, vol. 13, no. 1, pp. 7–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Kopp, H. Seyhan, B. Müller et al., “N-acetyl-L-cysteine abrogates fibrogenic properties of fibroblasts isolated from Dupuytren's disease by blunting TGF-β signalling,” Journal of Cellular and Molecular Medicine, vol. 10, no. 1, pp. 157–165, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. F. Fraser, L. Cuttle, M. Kempf, G. E. Phillips, M. T. Hayes, and R. M. Kimble, “A randomised controlled trial of amniotic membrane in the treatment of a standardised burn injury in the merino lamb,” Burns, vol. 35, no. 7, pp. 998–1003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. Eming, B. Brachvogel, T. Odorisio, and M. Koch, “Regulation of angiogenesis: wound healing as a model,” Progress in Histochemistry and Cytochemistry, vol. 42, no. 3, pp. 115–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. W. P. Faulk, R. Matthews, P. J. Stevens, J. P. Bennett, H. Burgos, and B. L. Hsi, “Human amnion as an adjunct in wound healing,” The Lancet, vol. 1, no. 8179, pp. 1156–1158, 1980. View at Publisher · View at Google Scholar · View at Scopus
  28. J. P. Bennett, R. Matthews, and W. P. Faulk, “Treatment of chronic ulceration of the legs with human amnion,” The Lancet, vol. 1, no. 8179, pp. 1153–1156, 1980. View at Google Scholar · View at Scopus
  29. H. E. Knaggs, D. B. Holland, C. Morris, E. J. Wood, and W. J. Cunliffe, “Quantification of cellular proliferation in acne using the monoclonal antibody Ki-67,” Journal of Investigative Dermatology, vol. 102, no. 1, pp. 89–92, 1994. View at Google Scholar · View at Scopus
  30. T. Shimizu, M. Muto, T. Murakami, H. Furumoto, S. Mogami, and C. Asagami, “Overexpression of p53 protein associated with proliferative activity as evaluated by Ki-67 immunostaining in well-differentiated squamous cell carcinoma of the skin,” Dermatology, vol. 195, no. 3, pp. 224–227, 1997. View at Google Scholar · View at Scopus
  31. M. L. Usui, R. A. Underwood, J. N. Mansbridge, L. A. Muffley, W. G. Carter, and J. E. Olerud, “Morphological evidence for the role of suprabasal keratinocytes in wound reepithelialization,” Wound Repair and Regeneration, vol. 13, no. 5, pp. 468–479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. P. Andriessen, F. B. Niessen, P. C. van de Kerkhof et al., “Hypertrophic scarring is associated with epidermal abnormalities: an immunohistochemical study,” Journal of Pathology, vol. 186, no. 2, pp. 192–200, 1998. View at Google Scholar
  33. N. J. Koizumi, T. J. Inatomi, C. J. Sotozono, N. J. Fullwood, A. J. Quantock, and S. Kinoshita, “Growth factor mRNA and protein in preserved human amniotic membrane,” Current Eye Research, vol. 20, no. 3, pp. 173–177, 2000. View at Google Scholar · View at Scopus
  34. C. M. Young and J. W. Hopewell, “The evaluation of an isotope clearance technique in the dermis of pig skin: a correlation of functional and morphological parameters,” Microvascular Research, vol. 20, no. 2, pp. 182–194, 1980. View at Google Scholar · View at Scopus
  35. T. Maral, H. Borman, H. Arslan, B. Demirhan, G. Akinbingol, and M. Haberal, “Effectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing,” Burns, vol. 25, no. 7, pp. 625–635, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. C. C. Yates, D. Whaley, S. Hooda, P. A. Hebda, R. J. Bodnar, and A. Wells, “Delayed reepithelialization and basement membrane regeneration after wounding in mice lacking CXCR3,” Wound Repair and Regeneration, vol. 17, no. 1, pp. 34–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Andree, C. Reimer, C. P. Page, J. Slama, B. G. Stark, and E. Eriksson, “Basement membrane formation during wound healing is dependent on epidermal transplants,” Plastic and Reconstructive Surgery, vol. 107, no. 1, pp. 97–104, 2001. View at Google Scholar · View at Scopus
  38. L. K. Branski, D. N. Herndon, M. M. Celis, W. B. Norbury, O. E. Masters, and M. G. Jeschke, “Amnion in the treatment of pediatric partial-thickness facial burns,” Burns, vol. 34, no. 3, pp. 393–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Laurent, A. Nallet, L. Obert, L. Nicod, and F. Gindraux, “Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank,” Cell and Tissue Banking. In press.
  40. S. Hennerbichler, B. Reichl, D. Pleiner, C. Gabriel, J. Eibl, and H. Redl, “The influence of various storage conditions on cell viability in amniotic membrane,” Cell and Tissue Banking, vol. 8, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. N. E. Piserchia and G. I. Akenzua, “Amniotic membrane dressing for burns in children: a cheap method of treatment for developing countries,” Tropical and Geographical Medicine, vol. 33, no. 3, pp. 235–240, 1981. View at Google Scholar · View at Scopus
  42. K. M. Ramakrishnan and V. Jayaraman, “Management of partial-thickness burn wounds by amniotic membrane: a cost-effective treatment in developing countries,” Burns, vol. 23, supplement 1, pp. S33–S36, 1997. View at Publisher · View at Google Scholar · View at Scopus