Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 580981, 15 pages
http://dx.doi.org/10.1155/2014/580981
Research Article

Molecular Epidemiology and Genotyping of Mycobacterium tuberculosis Isolated in Baghdad

1Genetic Engineering and Biotechnology Institute for Post Graduate Studies, University of Baghdad, 10070 Jadriyah, Baghdad, Iraq
2Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute (HSR), via Olgettina, 60 20132 Milano, Italy
3Institut Pasteur de la Guadeloupe, Abymes, 97183 Guadeloupe, France
4Ministry of Agriculture, Al Nidhal Street, Baghdad 5157, Iraq

Received 7 November 2013; Revised 17 January 2014; Accepted 18 January 2014; Published 26 February 2014

Academic Editor: Tomasz Jagielski

Copyright © 2014 Ruqaya Mustafa Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “Global tuberculosis control,” WHO Report, WHO, Geneva, Switzerland, 2012. View at Google Scholar
  2. Ministry of Health of Iraq, “New diagnosis of tuberculosis in Iraq,” Tech. Rep., Ministry of Health of Iraq, Baghdad, Iraq, 2012. View at Google Scholar
  3. B. Mathema, N. E. Kurepina, P. J. Bifani, and B. N. Kreiswirth, “Molecular epidemiology of tuberculosis: current insights,” Clinical Microbiology Reviews, vol. 19, no. 4, pp. 658–685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. I. S. Kontsevaya, V. V. Nikolayevsky, and Y. M. Balabanova, “Molecular epidemiology of tuberculosis: objectives, methods, and prospects,” Molecular Genetics, Microbiology and Virology, vol. 26, no. 1, pp. 1–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Supply, S. Lesjean, E. Savine, K. Kremer, D. van Soolingen, and C. Locht, “Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units,” Journal of Clinical Microbiology, vol. 39, no. 10, pp. 3563–3571, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. L. S. Cowan, L. Diem, T. Monson et al., “Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States,” Journal of Clinical Microbiology, vol. 43, no. 2, pp. 688–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Supply, C. Allix, S. Lesjean et al., “Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 44, no. 12, pp. 4498–4510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Thong-On, N. Smittipat, T. Juthayothin et al., “Variable-number tandem repeats typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 in Thailand,” Tuberculosis, vol. 90, no. 1, pp. 9–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Wirth, F. Hildebrand, C. Allix-Béguec et al., “Origin, spread and demography of the Mycobacterium tuberculosis complex,” PLoS Pathogens, vol. 4, no. 9, Article ID e1000160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Cardoso Oelemann, H. M. Gomes, E. Willery et al., “The forest behind the tree: phylogenetic exploration of a dominant Mycobacterium tuberculosis strain lineage from a high tuberculosis burden country,” PloS ONE, vol. 6, no. 3, Article ID e18256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. David, V. Levy-Frébault, and M. F. Thorel, Méthodes de laboratoire de mycobactériologie clinique, Commission des Laboratoires de Référence et d’Expertise de l’Institut Pasteur, Paris, France, 1989.
  12. D. van Soolingen, P. W. M. Hermans, P. E. W. de Haas, D. R. Soll, and J. D. A. van Embden, “Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis,” Journal of Clinical Microbiology, vol. 29, no. 11, pp. 2578–2586, 1991. View at Google Scholar · View at Scopus
  13. J. Kamerbeek, L. Schouls, A. Kolk et al., “Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology,” Journal of Clinical Microbiology, vol. 35, no. 4, pp. 907–914, 1997. View at Google Scholar · View at Scopus
  14. K. Brudey, J. R. Driscoll, L. Rigouts et al., “Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology,” BMC Microbiology, vol. 6, article 23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Demay, B. Liens, T. Burguière et al., “SITVITWEB—a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology,” Infection, Genetics and Evolution, vol. 12, no. 4, pp. 755–766, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Koro Koro, Y. K. Simo, F. F. Piam et al., “Population dynamics of tuberculous Bacilli in Cameroon as assessed by spoligotyping,” Journal of Clinical Microbiology, vol. 51, no. 1, pp. 299–302, 2013. View at Google Scholar
  17. O. Kisa, G. Tarhan, S. Gunal et al., “Distribution of spoligotyping defined genotypic lineages among drug-resistant Mycobacterium tuberculosis complex clinical isolates in Ankara, Turkey,” PLoS ONE, vol. 7, no. 1, Article ID e30331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Mokrousov, “The quiet and controversial: ural family of Mycobacterium tuberculosis,” Infection, Genetics and Evolution, vol. 12, no. 4, pp. 619–629, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Sreevatsan, X. Pan, K. E. Stockbauer et al., “Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9869–9874, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Godreuil, G. Torrea, D. Terru et al., “First molecular epidemiology study of Mycobacterium tuberculosis in Burkina Faso,” Journal of Clinical Microbiology, vol. 45, no. 3, pp. 921–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Nakajima, Z. Rahim, Y. Fukushima et al., “Identification of Mycobacterium tuberculosis clinical isolates in Bangladesh by a species distinguishable multiplex PCR,” BMC Infectious Diseases, vol. 10, article 118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. O. Viegas, A. Machado, R. Groenheit et al., “Molecular diversity of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mozambique,” BMC Microbiology, vol. 10, article 195, 2010. View at Google Scholar
  23. S. A. Al-Hajoj, “Tuberculosis in Saudi Arabia: can we change the way we deal with the disease?” Journal of Infection and Public Health, vol. 3, no. 1, pp. 17–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Jafarian, M. Aghali-Merza, P. Farnia, M. Ahmadi, M. R. Masjedi, and A. A. Velayati, “Synchronous comparison of Mycobacterium tuberculosis epidemiology strains by MIRU-VNTR and MIRU-VNTR and spoligotyping technique,” Avicenna Journal of Medical Biotechnology, vol. 2, no. 3, pp. 145–152, 2010. View at Google Scholar · View at Scopus
  25. M. Tanveer, Z. Hasan, A. R. Siddiqui et al., “Genotyping and drug resistance patterns of M. tuberculosis strains in Pakistan,” BMC Infectious Diseases, vol. 8, article 171, pp. 2–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Varma-Basil, S. Kumar, J. Arora et al., “Comparison of spoligotyping, mycobacterial interspersed repetitive units typing and IS6110-RFLP in a study of genotypic diversity of Mycobacterium tuberculosis in Delhi, North India,” Memórias do Instituto Oswaldo Cruz Rio de Janeiro, vol. 106, no. 5, pp. 524–535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. H. Helal, M. S. E.-D. Ashour, S. A. Eissa et al., “Unexpectedly high proportion of ancestral manu genotype Mycobacterium tuberculosis strains cultured from tuberculosis patients in Egypt,” Journal of Clinical Microbiology, vol. 47, no. 9, pp. 2794–2801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Gagneux, K. DeRiemer, T. Van et al., “Variable host-pathogen compatibility in Mycobacterium tuberculosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2869–2873, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Banu, S. V. Gordon, S. Palmer et al., “Genotypic analysis of Mycobacterium tuberculosis in bangladesh and prevalence of the Beijing strain,” Journal of Clinical Microbiology, vol. 42, no. 2, pp. 674–682, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Y.-J. Sun, R. Bellamy, A. S. G. Lee et al., “Use of mycobacterial interspersed repetitive unit-variable-number tandem repeat typing to examine genetic diversity of Mycobacterium tuberculosis in Singapore,” Journal of Clinical Microbiology, vol. 42, no. 5, pp. 1986–1993, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Ali, Z. Hasan, M. Tanveer et al., “Characterization of Mycobacterium tuberculosis central Asian Strain 1 using mycobacterial interspersed repetitive unit genotyping,” BMC Microbiology, vol. 7, article 76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Valcheva, I. Mokrousov, O. Narvskaya, N. Rastogi, and N. Markova, “Utility of new 24-locus variable-number tandem-repeat typing for discriminating Mycobacterium tuberculosis clinical isolates collected in Bulgaria,” Journal of Clinical Microbiology, vol. 46, no. 9, pp. 3005–3011, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Murase, S. Mitarai, I. Sugawara, S. Kato, and S. Maeda, “Promising loci of variable numbers of tandem repeats for typing Beijing family Mycobacterium tuberculosis,” Journal of Medical Microbiology, vol. 57, no. 7, pp. 873–880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Comas, S. Homolka, S. Niemann, and S. Gagneux, “Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies,” PLoS ONE, vol. 4, no. 11, Article ID e7815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Ferdinand, G. Valétudie, C. Sola, and N. Rastogi, “Data mining of Mycobacterium tuberculosis complex genotyping results using mycobacterial interspersed repetitive units validates the clonal structure of spoligotyping-defined families,” Research in Microbiology, vol. 155, no. 8, pp. 647–654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Aminian, A. Shabbeer, and K. P. Bennett, “A conformal Bayesian network for classification of Mycobacterium tuberculosis complex lineages,” BMC Bioinformatics, vol. 11, supplement 3, article S4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. N. H. Mendes, F. A. F. Melo, A. C. B. Santos et al., “Characterization of the genetic diversity of Mycobacterium tuberculosis in São Paulo city, Brazil,” BMC Research Notes, vol. 4, article 269, 2011. View at Publisher · View at Google Scholar · View at Scopus