Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 598129, 9 pages
http://dx.doi.org/10.1155/2014/598129
Research Article

Large-Scale Protein-Protein Interactions Detection by Integrating Big Biosensing Data with Computational Model

1College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
2Department of Computing, Hong Kong Polytechnic University, Hong Kong
3Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, Jiangsu 215163, China

Received 23 June 2014; Accepted 24 July 2014; Published 18 August 2014

Academic Editor: Jiangning Song

Copyright © 2014 Zhu-Hong You et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Vestergaard, K. Kerman, and E. Tamiya, “An overview of label-free electrochemical protein sensors,” Sensors, vol. 7, no. 12, pp. 3442–3458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Uetz, L. Glot, G. Cagney et al., “A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae,” Nature, vol. 403, no. 6770, pp. 623–627, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Collins, P. Kemmeren, X. Zhao et al., “Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae,” Molecular and Cellular Proteomics, vol. 6, no. 3, pp. 439–450, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Ho, A. Gruhler, A. Heilbut et al., “Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry,” Nature, vol. 415, no. 6868, pp. 180–183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Simonis, J. Rual, A. Carvunis et al., “Empirically controlled mapping of the caenorhabditis elegans protein-protein interactome network,” Nature Methods, vol. 6, no. 1, pp. 47–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Venkatesan, J. Rual, A. Vazquez et al., “An empirical framework for binary interactome mapping,” Nature Methods, vol. 6, no. 1, pp. 83–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Yu, P. Braun, M. A. Yildirim et al., “High-quality binary protein interaction map of the yeast interactome network,” Science, vol. 322, no. 5898, pp. 104–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Giot, J. S. Bader, C. Brouwer et al., “A Protein Interaction Map of Drosophila melanogaster,” Science, vol. 302, no. 5651, pp. 1727–1736, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Schachter, “Construction and prediction of protein: protein interaction maps,” in Ernst Schering Research Foundation Workshop. Bioinformatics and Genome Analysis, H. W. Mewes, H. Seidel, and B. Weiss, Eds., vol. 38, pp. 191–220, 2002. View at Google Scholar
  10. L. Giot, J. S. Bader, C. Brouwer et al., “A protein interaction map of Drosophila melanogaster,” Science, vol. 302, no. 5651, pp. 1727–1736, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Huang, S. Wan, Z. Xu et al., “Analysis and prediction of translation rate based on sequence and functional features of the mRNA,” PLoS ONE, vol. 6, no. 1, Article ID e16036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. You, Y. Lei, J. Gui, D. Huang, and X. Zhou, “Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data,” Bioinformatics, vol. 26, no. 21, pp. 2744–2751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. M. Edwards, B. Kus, R. Jansen, D. Greenbaum, J. Greenblatt, and M. Gerstein, “Bridging structural biology and genomics: assessing protein interaction data with known complexes,” Drug Discovery Today, vol. 9, no. 2, pp. S32–S40, 2004. View at Google Scholar · View at Scopus
  14. G. Liu, J. Li, and L. Wong, “Assessing and predicting protein interactions using both local and global network topological metrics,” Genome Informatics, vol. 21, pp. 138–149, 2008. View at Google Scholar · View at Scopus
  15. H. N. Chua and L. Wong, “Increasing the reliability of protein interactomes,” Drug Discovery Today, vol. 13, no. 15-16, pp. 652–658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Huang, J. Zhang, Z. Xu et al., “Deciphering the effects of gene deletion on yeast longevity using network and machine learning approaches,” Biochimie, vol. 94, no. 4, pp. 1017–1025, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Z.-H. You, Y.-K. Lei, L. Zhu, J. Xia, and B. Wang, “Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis,” BMC bioinformatics, vol. 14, supplement 8, article S10, 2013. View at Publisher · View at Google Scholar
  18. T. Huang, C. Wang, G. Zhang, L. Xie, and Y. Li, “SySAP: a system-level predictor of deleterious single amino acid polymorphisms,” Protein and Cell, vol. 3, no. 1, pp. 38–43, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. You, Z. Yin, K. Han, D. Huang, and X. Zhou, “A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network,” BMC Bioinformatics, vol. 11, no. 1, article 343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Huang, J. Wang, Y. Cai, H. Yu, and K. Chou, “Hepatitis c virus network based classification of hepatocellular cirrhosis and carcinoma,” PLoS ONE, vol. 7, no. 4, Article ID e34460, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Song, Z. Yuan, H. Tan, T. Huber, and K. Burrage, “Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure,” Bioinformatics, vol. 23, no. 23, pp. 3147–3154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Huang, X. Shi, P. Wang et al., “Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks,” PLoS ONE, vol. 5, no. 6, Article ID e10972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Song, H. Tan, H. Shen et al., “Cascleave: towards more accurate prediction of caspase substrate cleavage sites,” Bioinformatics, vol. 26, no. 6, Article ID btq043, pp. 752–760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Huang, K. Tu, Y. Shyr, C.-C. Wei, L. Xie, and Y.-X. Li, “The prediction of interferon treatment effects based on time series microarray gene expression profiles,” Journal of Translational Medicine, vol. 6, article 44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Zhu, Z. You, D. Huang, and B. Wang, “t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks,” PLoS ONE, vol. 8, no. 4, Article ID e58368, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Guo, L. Yu, Z. Wen, and M. Li, “Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences,” Nucleic Acids Research, vol. 36, no. 9, pp. 3025–3030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Qi, J. Klein-Seetharaman, and Z. Bar-Joseph, “A mixture of feature experts approach for protein-protein interaction prediction,” BMC Bioinformatics, vol. 8, no. 10, article S6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. X.-Y. Pan, Y.-N. Zhang, and H.-B. Shen, “Large-scale prediction of human protein-protein interactions from amino acid sequence based on latent topic features,” Journal of Proteome Research, vol. 9, no. 10, pp. 4992–5001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Shen, J. Zhang, X. Luo et al., “Predicting protein-protein interactions based only on sequences information,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 11, pp. 4337–4341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Pitre, M. Hooshyar, A. Schoenrock et al., “Short co-occurring polypeptide regions can predict global protein interaction maps,” Scientific Reports, vol. 2, article 239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. Y.-K. Lei, Z.-H. You, Z. Ji, L. Zhu, and D.-S. Huang, “Assessing and predicting protein interactions by combining manifold embedding with multiple information integration,” BMC Bioinformatics, vol. 13, supplement 7, article S3, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Song, H. Tan, M. Wang, G. I. Webb, and T. Akutsu, “Tangle: two-Level support vector regression approach for protein backbone torsion angle prediction from primary sequences,” PLoS ONE, vol. 7, no. 2, Article ID e30361, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Chang and C. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–27, 2011. View at Google Scholar
  34. G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Smialowski, P. Pagel, P. Wong et al., “The Negatome database: a reference set of non-interacting protein pairs,” Nucleic Acids Research, vol. 38, no. 1, pp. D540–D544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Song, H. Tan, A. J. Perry et al., “PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites,” PLoS ONE, vol. 7, no. 11, Article ID e50300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Huang, Z. Xu, L. Chen, Y. Cai, and X. Kong, “Computational analysis of HIV-1 resistance based on gene expression profiles and the virus-host interaction network,” PLoS ONE, vol. 6, no. 3, Article ID e17291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Huang, M. Jiang, X. Kong, and Y. Cai, “Dysfunctions associated with methylation, microrna expression and gene expression in lung cancer,” PLoS ONE, vol. 7, no. 8, Article ID e43441, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Dubchak, I. Muchnik, S. R. Holbrook, and S. Kim, “Prediction of protein folding class using global description of amino acid sequence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 19, pp. 8700–8704, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass classification,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 2, pp. 513–529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Huang, Q. Zhu, and C. Siew, “Extreme learning machine: a new learning scheme of feedforward neural networks,” in Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 1–4, pp. 985–990, July 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. G. B. Huang, X. Ding, and H. Zhou, “Optimization method based extreme learning machine for classification,” Neurocomputing, vol. 74, no. 1–3, pp. 155–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Huang, M. Li, L. Chen, and C. Siew, “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol. 71, no. 4–6, pp. 576–583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Minhas, A. A. Mohammed, and Q. M. Jonathan Wu, “A fast recognition framework based on extreme learning machine using hybrid object information,” Neurocomputing, vol. 73, no. 10-12, pp. 1831–1839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. J. Hand and R. J. Till, “A simple generalisation of the area under the ROC curve for multiple class classification problems,” Machine Learning, vol. 45, no. 2, pp. 171–186, 2001. View at Publisher · View at Google Scholar · View at Scopus