Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 598986, 8 pages
http://dx.doi.org/10.1155/2014/598986
Review Article

Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of Membrane Proton Transport

1Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
2Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
3Japan Institute for Food Education and Health, St. Agnes’ University, Kyoto 602-8013, Japan

Received 14 August 2014; Accepted 30 August 2014; Published 11 September 2014

Academic Editor: Akio Tomoda

Copyright © 2014 Wataru Aoi and Yoshinori Marunaka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. K. Garcia, J. L. Goldstein, R. K. Pathak, R. G. W. Anderson, and M. S. Brown, “Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle,” Cell, vol. 76, no. 5, pp. 865–873, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. A. P. Halestrap, “The monocarboxylate transporter family-structure and functional characterization,” IUBMB Life, vol. 64, no. 1, pp. 1–9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. R. C. Poole and A. P. Halestrap, “Transport of lactate and other monocarboxylates across mammalian plasma membranes,” The American Journal of Physiology—Cell Physiology, vol. 264, no. 4, part 1, pp. C761–C782, 1993. View at Google Scholar · View at Scopus
  4. G. Burckhardt, F. Di Sole, and C. Helmle-Kolb, “The Na+/H+ exchanger gene family,” Journal of Nephrology, vol. 15, supplement 5, pp. S3–S21, 2002. View at Google Scholar · View at Scopus
  5. S.-H. Loh, W.-H. Chen, C.-H. Chiang et al., “Intracellular pH regulatory mechanism in human atrial myocardium: Functional evidence for Na+/H+ exchanger and Na+/HCO3 symporter,” Journal of Biomedical Science, vol. 9, no. 3, pp. 198–205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Authier, J. P. Albrand, M. Decorps, H. Reutenauer, and A. Rossi, “Disruption of muscle energy metabolism due to intense ischaemic exercise: a 31P NMR study in rats,” Physiological Chemistry & Physics & Medical NMR, vol. 19, no. 2, pp. 83–93, 1987. View at Google Scholar · View at Scopus
  7. R. H. Fitts, “Cellular mechanisms of muscle fatigue,” Physiological Reviews, vol. 74, no. 1, pp. 49–94, 1994. View at Google Scholar · View at Scopus
  8. C. Juel, “Lactate/proton co-transport in skeletal muscle: regulation and importance for pH homeostasis,” Acta Physiologica Scandinavica, vol. 156, no. 3, pp. 369–374, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Juel, “Intracellular pH recovery and lactate efflux in mouse soleus muscles stimulated in vitro: the involvement of sodium/proton exchange and a lactate carrier,” Acta Physiologica Scandinavica, vol. 132, no. 3, pp. 363–371, 1988. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Bonen, S. K. Baker, and H. Hatta, “Lactate transport and lactate transporters in skeletal muscle,” Canadian Journal of Applied Physiology, vol. 22, no. 6, pp. 531–552, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Juel, “Regulation of cellular pH in skeletal muscle fiber types, studied with sarcolemmal giant vesicles obtained from rat muscles,” Biochimica et Biophysica Acta, vol. 1265, no. 2-3, pp. 127–132, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Eledrisi, M. S. Alshanti, M. F. Shah, B. Brolosy, and N. Jaha, “Overview of the diagnosis and management of diabetic ketoacidosis,” The American Journal of the Medical Sciences, vol. 331, no. 5, pp. 243–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Fafournoux, C. Demigné, and C. Rémésy, “Mechanisms involved in ketone body release by rat liver cells: Influence of pH and bicarbonate,” The American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 252, no. 2, part 1, pp. G200–G208, 1987. View at Google Scholar · View at Scopus
  14. H. K. Metcalfe, J. P. Monson, S. G. Welch, and R. D. Cohen, “Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism,” Journal of Clinical Investigation, vol. 78, no. 3, pp. 743–747, 1986. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Roth and G. A. Brooks, “Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles,” Archives of Biochemistry and Biophysics, vol. 279, no. 2, pp. 377–385, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Juel, “Muscle lactate transport studied in sarcolemmal giant vesicles,” Biochimica et Biophysica Acta—Biomembranes, vol. 1065, no. 1, pp. 15–20, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. McDermott and A. Bonen, “Lactate transport by skeletal muscle sarcolemmal vesicles,” Molecular and Cellular Biochemistry, vol. 122, no. 2, pp. 113–121, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. R. C. Poole and A. P. Halestrap, “Transport of lactate and other monocarboxylates across mammalian plasma membranes,” The American Journal of Physiology, vol. 264, part 1, no. 4, pp. C761–C782, 1993. View at Google Scholar · View at Scopus
  19. A. Bonen, M. Tonouchi, D. Miskovic, C. Heddle, J. J. Heikkila, and A. P. Halestrap, “Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 279, no. 5, pp. E1131–E1138, 2000. View at Google Scholar · View at Scopus
  20. G. A. Brooks, H. Dubouchaud, M. Brown, J. P. Sicurello, and C. E. Butz, “Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 3, pp. 1129–1134, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Pilegaard, G. Terzis, A. Halestrap, and G. Juel, “Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 276, no. 5, pp. E843–E848, 1999. View at Google Scholar · View at Scopus
  22. C. K. Garcia, M. S. Brown, R. K. Pathak, and J. L. Goldstein, “cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1,” Journal of Biological Chemistry, vol. 270, no. 4, pp. 1843–1849, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Murakami, N. Kohyama, Y. Kobayashi et al., “Functional characterization of human monocarboxylate transporter 6 (SLC16A5),” Drug Metabolism and Disposition, vol. 33, no. 12, pp. 1845–1851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. E. C. H. Friesema, S. Ganguly, A. Abdalla, J. E. Manning Fox, A. P. Halestrap, and T. J. Visser, “Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter,” Journal of Biological Chemistry, vol. 278, no. 41, pp. 40128–40135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Suhre, S.-Y. Shin, A.-K. Petersen et al., “Human metabolic individuality in biomedical and pharmaceutical research,” Nature, vol. 477, no. 7362, pp. 54–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. W. E. Visser, E. C. H. Friesema, and T. J. Visser, “Minireview: thyroid hormone transporters: the knowns and the unknowns,” Molecular Endocrinology, vol. 25, no. 1, pp. 1–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Wakabayashi, M. Shigekawa, and J. Pouyssegur, “Molecular physiology of vertebrate Na+/H+ exchangers,” Physiological Reviews, vol. 77, no. 1, pp. 51–74, 1997. View at Google Scholar · View at Scopus
  28. J. Orlowski and S. Grinstein, “Diversity of the mammalian sodium/proton exchanger SLC9 gene family,” Pflugers Archiv European Journal of Physiology, vol. 447, no. 5, pp. 549–565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Donowitz and C. M. Tse, “Molecular physiology of mammalian epithelial Na+/H+ exchangers NHE2 and NHE3,” Current Topics in Membranes, vol. 50, pp. 437–498, 2001. View at Google Scholar
  30. I. A. Bobulescu and O. W. Moe, “Na+/H+ exchangers in renal regulation of acid-base balance,” Seminars in Nephrology, vol. 26, no. 5, pp. 334–344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. C. A. Wagner, O. Devuyst, S. Bourgeois, and N. Mohebbi, “Regulated acid-base transport in the collecting duct,” Pflügers Archiv, vol. 458, no. 1, pp. 137–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. B. J. Harvey and J. Ehrenfeld, “Epithelial pH and ion transport regulation by proton pumps and exchangers,” Ciba Foundation Symposium, vol. 139, pp. 139–164, 1988. View at Google Scholar · View at Scopus
  33. S. Sumi, I. Mineo, N. Kono, T. Shimizu, K. Nonaka, and S. Tarui, “Decreases in hepatic fructose-2,6-bisphosphate level and fructose-6-phosphate,2-kinase activity in diabetic mice: a close relationship to the development of ketosis,” Biochemical and Biophysical Research Communications, vol. 120, no. 1, pp. 103–108, 1984. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Lemieux, M. R. Aranda, P. Fournel, and C. Lemieux, “Renal enzymes during experimental diabetes mellitus in the rat. Role of insulin, carbohydrate metabolism, and ketoacidosis,” Canadian Journal of Physiology and Pharmacology, vol. 62, no. 1, pp. 70–75, 1984. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Gil, J. Carreras, and R. Bartrons, “Effects of diabetes on fructose 2,6-P2, glucose 1,6-P2 and 6-phosphofructo 2-kinase in rat liver,” Biochemical and Biophysical Research Communications, vol. 136, no. 2, pp. 498–503, 1986. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Rahman, H. P. Schneider, A. Bröer, J. W. Deitmer, and S. Bröer, “Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1,” Biochemistry, vol. 38, no. 35, pp. 11577–11584, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Merezhinskaya, W. N. Fishbein, J. I. Davis et al., “Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport,” Muscle & Nerve, vol. 23, no. 1, pp. 90–97, 2000. View at Google Scholar
  38. W. N. Fishbein, “Lactate transporter defect: a new disease of muscle,” Science, vol. 234, no. 4781, pp. 1254–1256, 1986. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Merezhinskava and W. N. Fishbein, “Muscle monocarboxylate transporter (MCT1) mutations in 5 patients with red cell irbc lactate transport deficiency (LTD),” FASEB Journal, vol. 11, no. 9, article 656, 1997. View at Google Scholar · View at Scopus
  40. G. Py, K. Lambert, A. Perez-Martin, E. Raynaud, C. Prefaut, and J. Mercier, “Impaired sarcolemmal vesicle lactate uptake and skeletal muscle MCT1 and MCT4 expression in obese Zucker rats,” American Journal of Physiology: Endocrinology and Metabolism, vol. 281, no. 6, pp. E1308–E1315, 2001. View at Google Scholar · View at Scopus
  41. C. Juel, A. Honig, and H. Pilegaard, “Muscle lactate transport studied in sarcolemmal giant vesicles: dependence on fibre type and age,” Acta Physiologica Scandinavica, vol. 143, no. 4, pp. 361–365, 1991. View at Publisher · View at Google Scholar · View at Scopus
  42. K. J. A. McCullagh and A. Bonen, “Reduced lactate transport in denervated rat skeletal muscle,” The American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 268, no. 4, part 2, pp. R884–R888, 1995. View at Google Scholar · View at Scopus
  43. G. M. Reaven, C. Hollenbeck, C.-Y. Jeng, M. S. Wu, and Y.-D. I. Chen, “Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM,” Diabetes, vol. 37, no. 8, pp. 1020–1024, 1988. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Aoi, S. Hosogi, N. Niisato et al., “Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts,” Biochemical and Biophysical Research Communications, vol. 432, no. 4, pp. 650–653, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Fogh-Andersen, B. M. Altura, B. T. Altura, and O. Siggaard-Andersen, “Composition of interstitial fluid,” Clinical Chemistry, vol. 41, no. 10, pp. 1522–1525, 1995. View at Google Scholar · View at Scopus
  46. K. Aukland and H. O. Fadnes, “Protein concentration of interstitial fluid collected from rat skin by a wick method,” Acta Physiologica Scandinavica, vol. 88, no. 3, pp. 350–358, 1973. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Hayata, H. Miyazaki, N. Niisato, N. Yokoyama, and Y. Marunaka, “Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance,” Biochemical and Biophysical Research Communications, vol. 445, no. 1, pp. 170–174, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Otsuki, T. Kitamura, K. Goya et al., “Association of urine acidification with visceral obesity and the metabolic syndrome,” Endocrine Journal, vol. 58, no. 5, pp. 363–367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. N. M. Maalouf, M. A. Cameron, O. W. Moe, B. Adams-Huet, and K. Sakhaee, “Low urine pH: a novel feature of the metabolic syndrome,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 5, pp. 883–888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. N. M. Maalouf, M. A. Cameron, O. W. Moe, and K. Sakhaee, “Metabolic basis for low urine pH in type 2 diabetes,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 7, pp. 1277–1281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. W. R. Farwell and E. N. Taylor, “Serum bicarbonate , anion gap and insulin resistance in the National Health and Nutrition Examination Survey,” Diabetic Medicine, vol. 25, no. 7, pp. 798–804, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. L.-O. Ohlson, B. Larsson, P. Bjorntorp et al., “Risk factors for type 2 (non-insulin-dependent) diabetes mellitus: thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913,” Diabetologia, vol. 31, no. 11, pp. 798–805, 1988. View at Google Scholar · View at Scopus
  53. M. G. Packard and J. Goodman, “Factors that influence the relative use of multiple memory systems,” Hippocampus, vol. 23, no. 11, pp. 1044–1052, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Marunaka, K. Yoshimoto, W. Aoi, S. Hosogi, and H. Ikegaya, “Low pH of interstitial fluid around hippocampus of the brain in diabetic OLETF rats,” Molecular and Cellular Therapies, vol. 2, article 6, 2014. View at Google Scholar
  55. Z. Mirza, M. A. Kamal, A. M. Abuzenadah et al., “Establishing genomic/transcriptomic links between alzheimer’s disease and type II diabetes mellitus by meta-analysis approach,” CNS & Neurological Disorders-Drug Targets, vol. 13, no. 3, pp. 501–516, 2013. View at Google Scholar
  56. H. Dudek, S. R. Datta, T. F. Franke et al., “Regulation of neuronal survival by the serine-threonine protein kinase Akt,” Science, vol. 275, no. 5300, pp. 661–665, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Rasgon and L. Jarvik, “Insulin resistance, affective disorders, and alzheimer’s disease: review and hypothesis,” The Journals of Gerontology A: Biological Sciences and Medical Sciences, vol. 59, no. 2, pp. 178–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Steen, B. M. Terry, E. J. Rivera et al., “Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease: is this type 3 diabetes?” Journal of Alzheimer's Disease, vol. 7, no. 1, pp. 63–80, 2005. View at Google Scholar · View at Scopus
  59. G. P. Holloway, V. Bezaire, G. J. F. Heigenhauser et al., “Mitochondrial long chain fatty acid oxidation, fatty acid translocase/ CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise,” Journal of Physiology, vol. 571, no. 1, pp. 201–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Wibom, E. Hultman, M. Johansson, K. Matherei, D. Constantin-Teodosiu, and P. G. Schantz, “Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining,” Journal of Applied Physiology, vol. 73, no. 5, pp. 2004–2010, 1992. View at Google Scholar · View at Scopus
  61. N. S. Bradley, L. A. Snook, S. S. Jain, G. J. F. Heigenhauser, A. Bonen, and L. L. Spriet, “Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 302, no. 2, pp. E183–E189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Susuki, O. Ito, H. Takahashi, and K. Takamatsu, “The effect of sprint training on skeletal muscle carnosine in humans,” International Journal of Sport and Health Science, vol. 2, pp. 105–110, 2004. View at Google Scholar
  63. W. S. Parkhouse, D. C. McKenzie, P. W. Hochachka, and W. K. Ovalle, “Buffering capacity of deproteinized human vastus lateralis muscle,” Journal of Applied Physiology, vol. 58, no. 1, pp. 14–17, 1985. View at Google Scholar · View at Scopus
  64. P. G. Arthur, M. C. Hogan, D. E. Bebout, P. D. Wagner, and P. W. Hochachka, “Modeling the effects of hypoxia on ATP turnover in exercising muscle,” Journal of Applied Physiology, vol. 73, no. 2, pp. 737–742, 1992. View at Google Scholar · View at Scopus
  65. C. A. DeSouza, L. F. Shapiro, C. M. Clevenger et al., “Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men,” Circulation, vol. 102, no. 12, pp. 1351–1357, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Dubouchaud, G. E. Butterfield, E. E. Wolfel, B. C. Bergman, and G. A. Brooks, “Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle,” American Journal of Physiology: Endocrinology and Metabolism, vol. 278, no. 4, pp. E571–E579, 2000. View at Google Scholar · View at Scopus
  67. S. K. Baker, K. J. A. Mccullagh, and A. Bonen, “Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle,” Journal of Applied Physiology, vol. 84, no. 3, pp. 987–994, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Bonen, K. J. A. McCullagh, C. T. Putman, E. Hultman, N. L. Jones, and G. J. F. Heigenhauser, “Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate,” American Journal of Physiology: Endocrinology and Metabolism, vol. 274, no. 1, part 1, pp. E102–E107, 1998. View at Google Scholar · View at Scopus
  69. K. Narumi, A. Furugen, M. Kobayashi, S. Otake, S. Itagaki, and K. Iseki, “Regulation of monocarboxylate transporter 1 in skeletal muscle cells by intracellular signaling pathways,” Biological and Pharmaceutical Bulletin, vol. 33, no. 9, pp. 1568–1573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. W. Aoi, M. Tsuzuki, M. Fujie, S. Iwashita, and M. Suzuki, “Sustained voluntary climbing exercise increases erythrocyte monocarboxylate transporter 1 in rats,” Journal of Clinical Biochemistry and Nutrition, vol. 32, pp. 23–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Aoi, S. Iwashita, M. Fujie, and M. Suzuki, “Sustained swimming increases erythrocyte MCT1 during erythropoiesis and ability to regulate pH homeostasis in rat,” International Journal of Sports Medicine, vol. 25, no. 5, pp. 339–344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. M. S. Skelton, D. E. Kremer, E. W. Smith, and L. B. Gladden, “Lactate influx into red blood cells from trained and untrained human subjects,” Medicine and Science in Sports and Exercise, vol. 30, no. 4, pp. 536–542, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. L. A. Rassanan, K. J. Lampinen, and A. R. Poso, “Responses of blood and plasma lactate and plasma purine concentrations to maximal exercise and their relation to performance in standardbred trotters,” The American Journal of Veterinary Research, vol. 56, no. 12, pp. 1651–1656, 1995. View at Google Scholar · View at Scopus
  74. T. Nagao, S. Meguro, T. Hase et al., “A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes,” Obesity, vol. 17, no. 2, pp. 310–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Squadrito, H. Marini, A. Bitto et al., “Genistein in the metabolic syndrome: results of a randomized clinical trial,” The Journal of Clinical Endocrinology & Metabolism, vol. 98, no. 8, pp. 3366–3374, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Yoshida, P. F. Jacques, J. B. Meigs et al., “Effect of vitamin K supplementation on insulin resistance in older men and women,” Diabetes Care, vol. 31, no. 11, pp. 2092–2096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. Z. Asemi, M. Samimi, Z. Tabassi, H. Shakeri, and A. Esmaillzadeh, “Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women,” Journal of Nutrition, vol. 143, no. 9, pp. 1432–1438, 2013. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Ramel, A. Martinéz, M. Kiely, G. Morais, N. M. Bandarra, and I. Thorsdottir, “Beneficial effects of long-chain n-3 fatty acids included in an energy-restricted diet on insulin resistance in overweight and obese European young adults,” Diabetologia, vol. 51, no. 7, pp. 1261–1268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Vessby, M. Uusitupa, K. Hermansen et al., “Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study,” Diabetologia, vol. 44, no. 3, pp. 312–319, 2001. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Bhuvaneswari and C. V. Anuradha, “Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice,” Canadian Journal of Physiology and Pharmacology, vol. 90, no. 11, pp. 1544–1552, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Takikawa, S. Inoue, F. Horio, and T. Tsuda, “Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of amp-activated protein kinase in diabetic mice,” Journal of Nutrition, vol. 140, no. 3, pp. 527–533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. E. L. Greene, B. A. Nelson, K. A. Robinson, and M. G. Buse, “α-Lipoic acid prevents the development of glucose-induced insulin resistance in 3T3-L1 adipocytes and accelerates the decline in immunoreactive insulin during cell incubation,” Metabolism: Clinical and Experimental, vol. 50, no. 9, pp. 1063–1069, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. H.-S. Lee, H. J. Lee, and H. J. Suh, “Silk protein hydrolysate increases glucose uptake through up-regulation of GLUT 4 and reduces the expression of leptin in 3T3-L1 fibroblast,” Nutrition Research, vol. 31, no. 12, pp. 937–943, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. Y.-Q. Wang and M.-H. Yao, “Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK,” Journal of Nutritional Biochemistry, vol. 20, no. 12, pp. 982–991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Lindström, P. Ilanne-Parikka, M. Peltonen et al., “Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study,” The Lancet, vol. 368, no. 9548, pp. 1673–1679, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Plantinga, L. Ghiadoni, A. Magagna et al., “Supplementation with vitamins C and E improves arterial stiffness and endothelial function in essential hypertensive patients,” American Journal of Hypertension, vol. 20, no. 4, pp. 392–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Zureik, P. Galan, S. Bertrais et al., “Effects of long-term daily low-dose supplementation with antioxidant vitamins and minerals on structure and function of large arteries,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 8, pp. 1485–1491, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. I. Eskurza, K. D. Monahan, J. A. Robinson, and D. R. Seals, “Ascorbic acid does not affect large elastic artery compliance or central blood pressure in young and older men,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 286, no. 4, pp. H1528–H1534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. M. N. Woods, C. A. Wanke, P.-R. Ling et al., “Effect of a dietary intervention and n-3 fatty acid supplementation on measures of serum lipid and insulin sensitivity in persons with HIV,” The American Journal of Clinical Nutrition, vol. 90, no. 6, pp. 1566–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. M. L. Khalil, “Biological activity of bee propolis in health and disease,” sian Pacific Journal of Cancer Prevention, vol. 7, no. 1, pp. 22–31, 2006. View at Google Scholar · View at Scopus
  91. K. Yagi, S. Kim, H. Wanibuchi, T. Yamashita, Y. Yamamura, and H. Iwao, “Characteristics of diabetes, blood pressure, and cardiac and renal complications in Otsuka Long-Evans Tokushima Fatty rats,” Hypertension, vol. 29, no. 3, pp. 728–735, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Kawano, T. Hirashima, S. Mori, and T. Natori, “OLETF (Otsuka Long-Evans Tokushima fatty) rat: a new NIDDM rat strain,” Diabetes Research and Clinical Practice, vol. 24, pp. S317–S320, 1994. View at Publisher · View at Google Scholar · View at Scopus