Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 609369, 12 pages
http://dx.doi.org/10.1155/2014/609369
Research Article

Effect of Wheelchair Frame Material on Users’ Mechanical Work and Transmitted Vibration

1Laboratoire de Recherche en Imagerie et Orthopédie (LIO), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
2Centre de Recherche Interdisciplinaire en Réadaptation de Montréal, Institut de Réadaptation Gingras-Lindsay, Montréal, Canada
3Département de Génie de la Production Automatisée, École de Technologie Supérieure, Montréal, Canada

Received 13 March 2014; Revised 4 June 2014; Accepted 27 June 2014; Published 3 September 2014

Academic Editor: Andrew H. Hansen

Copyright © 2014 Félix Chénier and Rachid Aissaoui. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Bayley, T. P. Cochran, and C. B. Sledge, “The weight-bearing shoulder. The impingement syndrome in paraplegics,” Journal of Bone and Joint Surgery A, vol. 69, no. 5, pp. 676–678, 1987. View at Google Scholar · View at Scopus
  2. K. A. Curtis, G. A. Drysdale, R. D. Lanza, M. Kolber, R. S. Vitolo, and R. West, “Shoulder pain in wheelchair users with tetraplegia and paraplegia,” Archives of Physical Medicine and Rehabilitation, vol. 80, no. 4, pp. 453–457, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Finley and M. M. Rodgers, “Prevalence and identification of shoulder pathology in athletic and nonathletic wheelchair users with shoulder pain: a pilot study,” Journal of Rehabilitation Research and Development, vol. 41, no. 3, pp. 395–402, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. M. Samuelsson, H. Tropp, and B. Gerdle, “Shoulder pain and its consequences in paraplegic spinal cord-injured, wheelchair users,” Spinal Cord, vol. 42, no. 1, pp. 41–46, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Mercer, M. Boninger, A. Koontz, D. Ren, T. Dyson-Hudson, and R. Cooper, “Shoulder joint kinetics and pathology in manual wheelchair users,” Clinical Biomechanics, vol. 21, no. 8, pp. 781–789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Consortium for Spinal Cord Medicine, “Preservation of upper limb function following spinal cord injury: a clinical practice guideline for health-care professionals,” Journal of Spinal Cord Medicine, vol. 28, no. 5, pp. 434–470, 2005. View at Google Scholar
  7. L. S. Rose, The impact of wheelchair type on reducing the risk of shoulder overuse injuries following spinal cord injury [Ph.D. dissertation], UCL (University College London), 2012.
  8. ISO, “ISO 2631-1:1997—mechanical vibration and shock—evaluation of human exposure to whole-body vibration,” 1997.
  9. Y. Garcia-Mendez, J. L. Pearlman, M. L. Boninger, and R. A. Cooper, “Health risks of vibration exposure to wheelchair users in the community,” Journal of Spinal Cord Medicine, vol. 36, no. 4, pp. 365–375, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Wolf, R. A. Cooper, J. Pearlman, S. G. Fitzgerald, and A. Kelleher, “Longitudinal assessment of vibrations during manual and power wheelchair driving over select sidewalk surfaces,” Journal of Rehabilitation Research and Development, vol. 44, no. 4, pp. 573–580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Cooper, “Wheeled mobility: wheelchairs and personal transportation,” in The Biomedical Engineering Handbook, 2nd edition, 2000. View at Google Scholar
  12. S. de Groot, R. J. K. Vegter, and L. H. V. van der Woude, “Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique,” Medical Engineering and Physics, vol. 35, no. 10, pp. 1476–1482, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. R. E. Cowan, M. S. Nash, J. L. Collinger, A. M. Koontz, and M. L. Boninger, “Impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 7, pp. 1076–1083, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. P. DiGiovine, A. M. Koontz, and M. L. Boninger, “Advances in manual wheelchair technology,” Topics in Spinal Cord Injury Rehabilitation, vol. 11, no. 4, p. 1, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Kwarciak, R. A. Cooper, and S. G. Fitzgerald, “Curb descent testing of suspension manual wheelchairs,” Journal of Rehabilitation Research and Development, vol. 45, no. 1, pp. 73–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Cochran, “Comparison of the damping characteristics of structural al and ti alloys for wheelchair frame applications,” Tech. Rep., Colorado School of Mines, 2011. View at Google Scholar
  17. D. A. Chesney and P. W. Axelson, “Preliminary test method for the determination of surface firmness,” IEEE Transactions on Rehabilitation Engineering, vol. 4, no. 3, pp. 182–187, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. P. S. Requejo, S. Maneekobkunwong, J. McNitt-Gray, R. Adkins, and R. Waters, “Influence of hand-rim wheelchairs with rear suspension on seat forces and head acceleration during curb descent landings,” Journal of Rehabilitation Medicine, vol. 41, no. 6, pp. 459–466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. A. Cooper, E. Wolf, S. G. Fitzgerald, M. L. Boninger, R. Ulerich, and W. A. Ammer, “Seat and footrest shocks and vibrations in manual wheelchairs with and without suspension,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 1, pp. 96–102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Hostens, Y. Papaioannou, A. Spaepen, and H. Ramon, “A study of vibration characteristics on a luxury wheelchair and a new prototype wheelchair,” Journal of Sound and Vibration, vol. 266, no. 3, pp. 443–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Vorrink, L. Woude, and A. Messenberg, “Comparison of wheelchair wheels in terms of vibration and spasticity in people with spinal cord injury,” in Proceedings of the 4th International State-of-the-Art Congress in Rehabilitation: Mobility, Exercise and Sports, vol. 26, p. 51, IOS Press, 2010.
  22. B. Hughes, B. J. Sawatzky, and A. T. Hol, “A comparison of spinergy versus standard steel-spoke wheelchair wheels,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 3, pp. 596–601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Cooper, E. Wolf, S. G. Fitzgerald et al., “Evaluation of selected sidewalk pavement surfaces for vibration experienced by users of manual and powered wheelchairs,” The Journal of Spinal Cord Medicine, vol. 27, no. 5, pp. 468–475, 2004. View at Google Scholar · View at Scopus
  24. C. P. DiGiovine, R. A. Cooper, S. G. Fitzgerald, M. L. Boninger, E. J. Wolf, and S. Guo, “Whole-body vibration during manual wheelchair propulsion with selected seat cushions and back supports,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 3, pp. 311–322, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Garcia-Mendez, J. L. Pearlman, R. A. Cooper, and M. L. Boninger, “Dynamic stiffness and transmissibility of commercially available wheelchair cushions using a laboratory test method,” Journal of Rehabilitation Research and Development, vol. 49, no. 1, pp. 7–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. ASTM International, “F1951—standard specification for determination of accessibility of surface systems under and around playground equipment,” ASTM F1951-14, 1999.
  27. N. J. Mansfield, Human Response to Vibration, CRC Press, 2004.
  28. A. Meruani, Tweel technology tires for wheelchairs and instrumentation for measuring everyday wheeled mobility [Ph.D. dissertation], Georgia Institute of Technology, 2006.
  29. E. Wolf, J. Pearlman, R. A. Cooper et al., “Vibration exposure of individuals using wheelchairs over sidewalk surfaces,” Disability and Rehabilitation, vol. 27, no. 23, pp. 1443–1449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. VanSickle, R. Cooper, M. Boninger, and C. DiGiovine, “Analysis of vibrations induced during wheelchair propulsion,” Journal of Rehabilitation Research and Development, vol. 38, no. 4, pp. 409–421, 2001. View at Google Scholar
  31. Y. Marjanen, Validation and improvement of the iso 2631-1 (1997) standard method for evaluating discomfort from whole-body vibration in a multi-axis environment [Doctoral thesis], 2010.
  32. S. Kitazaki and M. J. Griffin, “Resonance behaviour of the seated human body and effects of posture,” Journal of Biomechanics, vol. 31, no. 2, pp. 143–149, 1997. View at Publisher · View at Google Scholar · View at Scopus