Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

BioMed Research International
Volume 2014 (2014), Article ID 618096, 6 pages
http://dx.doi.org/10.1155/2014/618096
Research Article

Biodistribution and SPECT Imaging Study of 99mTc Labeling NGR Peptide in Nude Mice Bearing Human HepG2 Hepatoma

Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi’an, Shaanxi Province 710032, China

Received 16 December 2013; Revised 30 January 2014; Accepted 3 February 2014; Published 19 May 2014

Academic Editor: Yongdoo Choi

Copyright © 2014 Wenhui Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Wang, Y. Wang, X. Chen, J. Wang, X. Zhang, and Q. Zhang, “NGR-modified micelles enhance their interaction with CD13-overexpressing tumor and endothelial cells,” Journal of Controlled Release, vol. 139, no. 1, pp. 56–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. B.-J. Zhao, X.-Y. Ke, Y. Huang et al., “The antiangiogenic efficacy of NGR-modified PEG-DSPE micelles containing paclitaxel (NGR-M-PTX) for the treatment of glioma in rats,” Journal of Drug Targeting, vol. 19, no. 5, pp. 382–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. V. Bhagwat, J. Lahdenranta, R. Giordano, W. Arap, R. Pasqualini, and L. H. Shapiro, “CD13/APN is activated by angiogenic signals and is essential for capillary tube formation,” Blood, vol. 97, no. 3, pp. 652–659, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. Negussie, J. L. Miller, G. Reddy, S. K. Drake, B. J. Wood, and M. R. Dreher, “Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome,” Journal of Controlled Release, vol. 143, no. 2, pp. 265–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Chen, W. Ma, G. Li et al., “Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for MicroPET imaging of CD13 receptor expression,” Molecular Pharmacology, vol. 10, no. 1, pp. 417–427, 2013. View at Google Scholar
  6. W. Arap, R. Pasqualini, and E. Ruoslahti, “Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model,” Science, vol. 279, no. 5349, pp. 377–380, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Curnis, G. Arrigoni, A. Sacchi et al., “Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells,” Cancer Research, vol. 62, no. 3, pp. 867–874, 2002. View at Google Scholar · View at Scopus
  8. I. Dijkgraaf, C.-B. Yim, G. M. Franssen et al., “PET imaging of αvβ3 integrin expression in tumours with68Ga-labelled mono-, di- and tetrameric RGD peptides,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 1, pp. 128–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Meng, Z. Yan, X. Xue et al., “High-yield expression, purification and characterization of tumor-targeted IFN-α2a,” Cytotherapy, vol. 9, no. 1, pp. 60–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y.-S. Yang, X. Zhang, Z. Xiong, and X. Chen, “Comparative in vitro and in vivo evaluation of two 64Cu-labeled bombesin analogs in a mouse model of human prostate adenocarcinoma,” Nuclear Medicine and Biology, vol. 33, no. 3, pp. 371–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Wang, W. Ma, J. Wang et al., “Imaging and therapy of hSSTR2-transfected tumors using radiolabeled somatostatin analogs,” Tumor Biology, vol. 34, no. 4, pp. 2451–2457, 2013. View at Google Scholar
  12. L. Adar, Y. Shamay, G. Journo, and A. David, “Pro-apoptotic peptide-polymer conjugates to induce mitochondrial-dependent cell death,” Polymers for Advanced Technologies, vol. 22, no. 1, pp. 199–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Chen, X. Sun, G. Niu et al., “Evaluation of 64Cu labeled GX1: a phage display peptide probe for PET imaging of tumor vasculature,” Molecular Imaging and Biology, vol. 14, no. 1, pp. 96–105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wu, X. Zhang, Z. Xiong et al., “microPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide,” Journal of Nuclear Medicine, vol. 46, no. 10, pp. 1707–1718, 2005. View at Google Scholar · View at Scopus
  15. M. W. Ndinguri, R. Solipuram, R. P. Gambrell, S. Aggarwal, and R. P. Hammer, “Peptide targeting of platinum anti-cancer drugs,” Bioconjugate Chemistry, vol. 20, no. 10, pp. 1869–1878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Corti, M. Giovannini, C. Belli, and E. Villa, “Immunomodulatory agents with antivascular activity in the treatment of non-small cell lung cancer: focus on TLR9 agonists, IMiDs and NGR-TNF,” Journal of Oncology, vol. 2010, Article ID 732680, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Chen and P. S. Conti, “Target-specific delivery of peptide-based probes for PET imaging,” Advanced Drug Delivery Reviews, vol. 62, no. 11, pp. 1005–1022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Ma, F. Kang, Z. Wang et al., “Tc99m-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice,” Amino Acids, vol. 44, no. 5, pp. 1337–1345, 2013. View at Google Scholar
  19. K. N. Samli, M. J. McGuire, C. B. Newgard, S. A. Johnston, and K. C. Brown, “Peptide-mediated targeting of the islets of Langerhans,” Diabetes, vol. 54, no. 7, pp. 2103–2108, 2005. View at Publisher · View at Google Scholar · View at Scopus