Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 626907, 8 pages
http://dx.doi.org/10.1155/2014/626907
Research Article

The Chromosome 9p21 Variant Not Predicting Long-Term Cardiovascular Mortality in Chinese with Established Coronary Artery Disease: An Eleven-Year Follow-Up Study

1Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
2School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
3School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
4Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
5Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
6Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
7Department of Ob/Gyn, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
8Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan

Received 30 November 2013; Revised 17 February 2014; Accepted 19 February 2014; Published 2 April 2014

Academic Editor: Amelie Bonnefond

Copyright © 2014 I-Te Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Lozano, M. Naghavi, K. Foreman et al., “Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010,” The Lancet, vol. 380, no. 9859, pp. 2095–2128, 2013. View at Google Scholar
  2. S. Zdravkovic, A. Wienke, N. L. Pedersen, M. E. Marenberg, A. I. Yashin, and U. De Faire, “Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins,” Journal of Internal Medicine, vol. 252, no. 3, pp. 247–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Zhou, X. Zhang, M. He et al., “Associations between single nucleotide polymorphisms on chromosome 9p21 and risk of coronary heart disease in Chinese Han population,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 11, pp. 2085–2089, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Zhang, X.-F. Wang, S.-S. Cheng et al., “Three SNPs on chromosome 9p21 confer increased risk of myocardial infarction in Chinese subjects,” Atherosclerosis, vol. 207, no. 1, pp. 26–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Guo, W. Li, Z. Wu, X. Cheng, Y. Wang, and T. Chen, “Association between 9p21. 3 genomic markers and coronary artery disease in East Asians: a meta-analysis involving 9, 813 cases and 10, 710 controls,” Molecular Biology Reports, vol. 40, no. 1, pp. 337–343, 2013. View at Publisher · View at Google Scholar
  6. Y. Gong, A. L. Beitelshees, R. M. Cooper-DeHoff et al., “Chromosome 9p21 haplotypes and prognosis in white and black patients with coronary artery disease,” Circulation: Cardiovascular Genetics, vol. 4, no. 2, pp. 169–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. L. Assimes, J. W. Knowles, A. Basu et al., “Susceptibility locus for clinical and subclinical coronary artery disease at chromosome 9p21 in the multi-ethnic ADVANCE study,” Human Molecular Genetics, vol. 17, no. 15, pp. 2320–2328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. McPherson, A. Pertsemlidis, N. Kavaslar et al., “A common allele on chromosome 9 associated with coronary heart disease,” Science, vol. 316, no. 5830, pp. 1488–1491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kathiresan, B. F. Voight, S. Purcell et al., “Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants,” Nature Genetics, vol. 41, no. 3, pp. 334–341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Qi, J. Ma, Q. Qi, J. Hartiala, H. Allayee, and H. Campos, “Genetic risk score and risk of myocardial infarction in hispanics,” Circulation, vol. 123, no. 4, pp. 374–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. T. M. Beckie, M. W. Groër, and J. W. Beckstead, “The relationship between polymorphisms on chromosome 9p21 and age of onset of coronary heart disease in black and white women,” Genetic Testing and Molecular Biomarkers, vol. 15, no. 6, pp. 435–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Saade, J.-B. Cazier, M. Ghassibe-Sabbagh et al., “Large scale association analysis identifies three susceptibility loci for coronary artery disease,” PLoS ONE, vol. 6, no. 12, Article ID e29427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Y. Lee, B. S. Lee, D. J. Shin et al., “A genome-wide association study of a coronary artery disease risk variant,” Journal of Human Genetics, vol. 58, no. 3, pp. 120–126, 2013. View at Publisher · View at Google Scholar
  14. L. Qi, J. M. Li, H. Sun et al., “Association between gene polymorphisms and myocardial infarction in Han Chinese of Yunnan province,” Chinese Journal of Medical Genetics, vol. 29, no. 4, pp. 413–419, 2012. View at Google Scholar
  15. K. Gransbo, P. Almgren, M. Sjogren et al., “Chromosome 9p21 genetic variation explains 13% of cardiovascular disease incidence but does not improve risk prediction,” Journal of Internal Medicine, vol. 274, no. 3, pp. 233–240, 2013. View at Publisher · View at Google Scholar
  16. I. Buysschaert, K. F. Carruthers, D. R. Dunbar et al., “A variant at chromosome 9p21 is associated with recurrent myocardial infarction and cardiac death after acute coronary syndrome: the GRACE genetics study,” European Heart Journal, vol. 31, no. 9, pp. 1132–1141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. S. Virani, A. Brautbar, V.-V. Lee et al., “Chromosome 9p21 single nucleotide polymorphisms are not associated with recurrent myocardial infarction in patients with established coronary artery disease,” Circulation Journal, vol. 76, no. 4, pp. 950–956, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972. View at Google Scholar · View at Scopus
  19. G. G. Gensini, “A more meaningful scoring system for determining the severity of coronary heart disease,” The American Journal of Cardiology, vol. 51, no. 3, p. 606, 1983. View at Google Scholar · View at Scopus
  20. L. N. Tseng, Y. H. Tseng, Y. D. Jiang et al., “Prevalence of hypertension and dyslipidemia and their associations with micro- and macrovascular diseases in patients with diabetes in Taiwan: an analysis of nationwide data for 2000–2009,” Journal of the Formosan Medical Association, vol. 111, no. 11, pp. 625–636, 2012. View at Publisher · View at Google Scholar
  21. H. M. Broadbent, J. F. Peden, S. Lorkowski et al., “Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p,” Human Molecular Genetics, vol. 17, no. 6, pp. 806–814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Silander, H. Tang, S. Myles et al., “Worldwide patterns of haplotype diversity at 9p21.3, a locus associated with type 2 diabetes and coronary heart disease,” Genome Medicine, vol. 1, no. 5, article 51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. M. Holdt, F. Beutner, M. Scholz et al., “ANRIL expression is associated with atherosclerosis risk at chromosome 9p21,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 3, pp. 620–627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Motterle, X. Pu, H. Wood et al., “Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells,” Human Molecular Genetics, vol. 21, no. 18, pp. 4021–4029, 2012. View at Publisher · View at Google Scholar
  25. M. S. Cunnington, M. S. Koref, B. M. Mayosi, J. Burn, and B. Keavney, “Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression,” PLoS Genetics, vol. 6, no. 4, Article ID e1000899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-L. Kuo, A. J. Murphy, S. Sayers et al., “Cdkn2a is an atherosclerosis modifier locus that regulates monocyte/macrophage proliferation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 11, pp. 2483–2492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. N. Chen, C. M. Ballantyne, A. M. Gotto Jr., and A. J. Marian, “The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis,” BMC Cardiovascular Disorders, vol. 9, article 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. W. H. Peng, L. Lu, Q. Zhang et al., “Chromosome 9p21 polymorphism is associated with myocardial infarction but not with clinical outcome in Han Chinese,” Clinical Chemistry and Laboratory Medicine, vol. 47, no. 8, pp. 917–922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. G. Canto, C. I. Kiefe, W. J. Rogers et al., “Atherosclerotic risk factors and their association with hospital mortality among patients with first myocardial infarction (from the National Registry of Myocardial Infarction),” The American Journal of Cardiology, vol. 110, no. 9, pp. 1256–1261, 2012. View at Publisher · View at Google Scholar
  30. M. K. Reriani, A. J. Flammer, A. Jama, L. O. Lerman, and A. Lerman, “Novel functional risk factors for the prediction of cardiovascular events in vulnerable patients following acute coronary syndrome,” Circulation Journal, vol. 76, no. 4, pp. 778–783, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. K.-W. Liang, W.-J. Lee, W.-L. Lee, C.-T. Ting, and W. H.-H. Sheu, “Decreased ratio of high-molecular-weight to total adiponectin is associated with angiographic coronary atherosclerosis severity but not restenosis,” Clinica Chimica Acta, vol. 405, no. 1-2, pp. 114–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. B. J. Arsenault, P. Barter, D. A. Demicco et al., “Prediction of cardiovascular events in statin-treated stable coronary patients by lipid and nonlipid biomarkers,” Journal of the American College of Cardiology, vol. 57, no. 1, pp. 63–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Baruch, N. van Bruggen, J. B. Kim, and J. E. Lehrer-Graiwer, “Anti-inflammatory strategies for plaque stabilization after acute coronary syndromes,” Current Atherosclerosis Reports, vol. 15, no. 6, p. 327, 2013. View at Publisher · View at Google Scholar
  34. L. Y. Chen, N. Sotoodehnia, P. Buzkova et al., “Atrial fibrillation and the risk of sudden cardiac death: the atherosclerosis risk in communities study and cardiovascular health study,” JAMA Internal Medicine, vol. 173, no. 1, pp. 29–35, 2013. View at Publisher · View at Google Scholar
  35. P. Tung and C. M. Albert, “Causes and prevention of sudden cardiac death in the elderly,” Nature Reviews Cardiology, vol. 10, no. 3, pp. 135–142, 2013. View at Publisher · View at Google Scholar
  36. A. C. J. W. Janssens and C. M. van Duijn, “Genome-based prediction of common diseases: advances and prospects,” Human Molecular Genetics, vol. 17, no. 2, pp. R166–R173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Ardissino, C. Berzuini, P. A. Merlini et al., “Influence of 9p21.3 genetic variants on clinical and angiographic outcomes in early-onset myocardial infarction,” Journal of the American College of Cardiology, vol. 58, no. 4, pp. 426–434, 2011. View at Google Scholar · View at Scopus
  38. J. B. Muhlestein and J. L. Anderson, “The 9p21.3 genetic region and coronary heart disease where do we go from here?” Journal of the American College of Cardiology, vol. 58, no. 4, pp. 435–437, 2011. View at Google Scholar · View at Scopus
  39. A. J. Marian, “The enigma of genetics etiology of atherosclerosis in the post-GWAS era,” Current Atherosclerosis Reports, vol. 14, no. 4, pp. 295–299, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. M. I. McCarthy, G. R. Abecasis, L. R. Cardon et al., “Genome-wide association studies for complex traits: consensus, uncertainty and challenges,” Nature Reviews Genetics, vol. 9, no. 5, pp. 356–369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. R. S. Patel, S. Su, I. J. Neeland et al., “The chromosome 9p21 risk locus is associated with angiographic severity and progression of coronary artery disease,” European Heart Journal, vol. 31, no. 24, pp. 3017–3023, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Hoppmann, A. Erl, S. Türk et al., “No association of chromosome 9p21.3 variation with clinical and angiographic outcomes after placement of drug-eluting stents,” JACC: Cardiovascular Interventions, vol. 2, no. 11, pp. 1149–1155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. A. Cavender, K. P. Alexander, S. Broderick et al., “Long-term morbidity and mortality among medically managed patients with angina and multivessel coronary artery disease,” American Heart Journal, vol. 158, no. 6, pp. 933–940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Wilkinson, J. Sayer, K. Laji et al., “Comparison of case fatality in south Asian and white patients after acute myocardial infarction: observational study,” British Medical Journal, vol. 312, no. 7042, pp. 1330–1333, 1996. View at Google Scholar · View at Scopus
  45. M. J. Zaman and R. S. Bhopal, “New answers to three questions on the epidemic of coronary mortality in south Asians: incidence or case fatality? Biology or environment? Will the next generation be affected?” Heart, vol. 99, no. 3, pp. 154–158, 2013. View at Publisher · View at Google Scholar
  46. A. S. Koh, L. W. Khin, L. M. Choi et al., “Percutaneous coronary intervention in asians- are there differences in clinical outcome?” BMC Cardiovascular Disorders, vol. 11, article 22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Goliasch, M. E. Kleber, B. Richter et al., “Routinely available biomarkers improve prediction of long-term mortality in stable coronary artery disease: the Vienna and Ludwigshafen Coronary Artery Disease (VILCAD) risk score,” European Heart Journal, vol. 33, no. 18, pp. 2282–2289, 2012. View at Publisher · View at Google Scholar
  48. C. P. Wen, S. P. Tsai, and W.-S. I. Chung, “A 10-year experience with universal health insurance in Taiwan: measuring changes in health and health disparity,” Annals of Internal Medicine, vol. 148, no. 4, pp. 258–267, 2008. View at Google Scholar · View at Scopus
  49. S. De Henauw, P. De Smet, W. Aelvoet, M. Kornitzer, and G. De Backer, “Misclassification of coronary heart disease in mortality statistics. Evidence from the WHO-MONICA Ghent-Charleroi study in Belgium,” Journal of Epidemiology and Community Health, vol. 52, no. 8, pp. 513–519, 1998. View at Google Scholar · View at Scopus