Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 627510, 16 pages
http://dx.doi.org/10.1155/2014/627510
Review Article

The Role of Single Nucleotide Polymorphisms in Predicting Prostate Cancer Risk and Therapeutic Decision Making

1Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
2Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium

Received 6 December 2013; Accepted 7 January 2014; Published 19 February 2014

Academic Editor: Giovanni Luca Gravina

Copyright © 2014 Thomas Van den Broeck et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics 2013,” CA: A Cancer Journal for Clinicians, vol. 63, no. 1, pp. 11–30, 2013. View at Google Scholar
  2. D. J. Schaid, “The complex genetic epidemiology of prostate cancer,” Human Molecular Genetics, vol. 13, no. 1, pp. R103–R121, 2004. View at Google Scholar · View at Scopus
  3. P. Lichtenstein, N. V. Holm, P. K. Verkasalo et al., “Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland,” The New England Journal of Medicine, vol. 343, no. 2, pp. 78–85, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Takata, S. Akamatsu, M. Kubo et al., “Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population,” Nature Genetics, vol. 42, no. 9, pp. 751–754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Xu, Z. Mo, D. Ye et al., “Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31. 2 and 19q13. 4.,” Nature Genetics, vol. 44, no. 11, pp. 1231–1235, 2012. View at Google Scholar
  6. R. A. Eeles, A. A. Al Olama, S. Benlloch et al., “Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array,” Nature Genetics, vol. 45, no. 4, pp. 385–391, 2013. View at Google Scholar
  7. J. Gudmundsson, P. Sulem, A. Manolescu et al., “Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24,” Nature Genetics, vol. 39, no. 5, pp. 631–637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Gudmundsson, P. Sulem, V. Steinthorsdottir et al., “Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes,” Nature Genetics, vol. 39, no. 8, pp. 977–983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Yeager, N. Orr, R. B. Hayes et al., “Genome-wide association study of prostate cancer identifies a second risk locus at 8q24,” Nature Genetics, vol. 39, no. 5, pp. 645–649, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Sun, S. L. Zheng, F. Wiklund et al., “Sequence variants at 22q13 are associated with prostate cancer risk,” Cancer Research, vol. 69, no. 1, pp. 10–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Eeles, Z. Kote-Jarai, and A. Al Olama, “Identification of seven new prostate cancer susceptibility loci through a genome-wide association study,” Nature Genetics, vol. 41, no. 10, pp. 1116–1121, 2009. View at Google Scholar
  12. C. A. Haiman, G. K. Chen, W. J. Blot et al., “Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21,” Nature Genetics, vol. 43, no. 6, pp. 570–573, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Gudmundsson, P. Sulem, and T. Rafnar, “Common sequence variants on 2p15 and Xp11. 22 confer susceptibility to prostate cancer,” Nature Genetics, vol. 40, no. 3, pp. 281–283, 2008. View at Google Scholar
  14. J. Gudmundsson, P. Sulem, D. F. Gudbjartsson et al., “Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility,” Nature Genetics, vol. 41, no. 10, pp. 1122–1126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Kote-Jarai, A. Al Olama, and G. Giles, “Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study,” Nature Genetics, vol. 43, no. 8, pp. 785–791, 2011. View at Google Scholar
  16. J. M. Murabito, C. L. Rosenberg, D. Finger et al., “A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study,” BMC Medical Genetics, vol. 8, supplement 1, article S6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Cheng, G. K. Chen, H. Nakagawa et al., “Evaluating genetic risk for prostate cancer among Japanese and Latinos,” Cancer Epidemiology, Biomarkers & Prevention, vol. 21, no. 11, pp. 2048–2058, 2012. View at Google Scholar
  18. L. M. FitzGerald, E. M. Kwon, M. P. Conomos et al., “Genome-wide association study identifies a genetic variant associated with risk for more aggressive prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 20, no. 6, pp. 1196–1203, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. K. Nam, W. Zhang, K. Siminovitch et al., “New variants at 10q26 and 15q21 are associated with aggressive prostate cancer in a genome-wide association study from a prostate biopsy screening cohort,” Cancer Biology and Therapy, vol. 12, no. 11, pp. 997–1004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. F. R. Schumacher, S. I. Berndt, A. Siddiq et al., “Genome-wide association study identifies new prostate cancer susceptibility loci,” Human Molecular Genetics, vol. 20, no. 19, pp. 3867–3875, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Shan, K. Al-Rumaihi, D. Rabah et al., “Genome scan study of prostate cancer in Arabs: identification of three genomic regions with multiple prostate cancer susceptibility loci in Tunisians,” Journal of Translational Medicine, vol. 11, article 121, 2013. View at Google Scholar
  22. S. Tao, J. Feng, T. Webster et al., “Genome-wide two-locus epistasis scans in prostate cancer using two European populations,” Human Genetics, vol. 131, no. 7, pp. 1225–1234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Amin Al Olama, Z. Kote-Jarai, F. R. Schumacher et al., “A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease,” Human Molecular Genetics, vol. 22, no. 2, pp. 408–415, 2013. View at Google Scholar
  24. D. Duggan, S. L. Zheng, M. Knowlton et al., “Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP,” Journal of the National Cancer Institute, vol. 99, no. 24, pp. 1836–1844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Eeles, Z. Kote-Jarai, G. G. Giles et al., “Multiple newly identified loci associated with prostate cancer susceptibility,” Nature Genetics, vol. 40, no. 3, pp. 316–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Thomas, K. B. Jacobs, M. Yeager et al., “Multiple loci identified in a genome-wide association study of prostate cancer,” Nature Genetics, vol. 40, no. 3, pp. 310–315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Ren, J. Xu, T. Zhou et al., “Plateau effect of prostate cancer risk-associated SNPs in discriminating prostate biopsy outcomes,” Prostate, vol. 73, no. 16, pp. 1824–1835, 2013. View at Google Scholar
  28. F. H. Schröder, J. Hugosson, M. J. Roobol et al., “Screening and prostate-cancer mortality in a randomized european study,” The New England Journal of Medicine, vol. 360, no. 13, pp. 1320–1328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. V. A. Moyer, “Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement,” Annals of Internal Medicine, vol. 157, no. 2, pp. 120–134, 2012. View at Google Scholar
  30. P. C. Walsh, “Re: screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement,” Journal of Urology, vol. 188, no. 4, p. 1181, 2012. View at Google Scholar
  31. A. Heidenreich, G. Aus, M. Bolla, and S. Joniau, “EAU guidelines on prostate cancer,” European Urology, vol. 53, pp. 31–45, 2008. View at Google Scholar
  32. S. L. Zheng, J. Sun, F. Wiklund et al., “Genetic variants and family history predict prostate cancer similar to prostate-specific antigen,” Clinical Cancer Research, vol. 15, no. 3, pp. 1105–1111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. C. A. Salinas, J. S. Koopmeiners, E. M. Kwon et al., “Clinical utility of five genetic variants for predicting prostate cancer risk and mortality,” Prostate, vol. 69, no. 4, pp. 363–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. S. Pepe, H. Janes, G. Longton, W. Leisenring, and P. Newcomb, “Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker,” American Journal of Epidemiology, vol. 159, no. 9, pp. 882–890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Xu, J. Sun, A. K. Kader et al., “Estimation of absolute risk for prostate cancer using genetic markers and family history,” Prostate, vol. 69, no. 14, pp. 1565–1572, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Sun, A. K. Kader, F.-C. Hsu et al., “Inherited genetic markers discovered to date are able to identify a significant number of men at considerably elevated risk for prostate cancer,” Prostate, vol. 71, no. 4, pp. 421–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Lindström, F. R. Schumacher, D. Cox et al., “Common genetic variants in prostate cancer risk prediction—results from the NCI breast and prostate cancer cohort consortium (BPC3),” Cancer Epidemiology Biomarkers and Prevention, vol. 21, no. 3, pp. 437–444, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. R. J. Macinnis, A. C. Antoniou, R. A. Eeles et al., “A risk prediction algorithm based on family history and common genetic variants: application to prostate cancer with potential clinical impact,” Genetic Epidemiology, vol. 35, no. 6, pp. 549–556, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Pashayan, S. W. Duffy, S. Chowdhury et al., “Polygenic susceptibility to prostate and breast cancer: implications for personalised screening,” British Journal of Cancer, vol. 104, no. 10, pp. 1656–1663, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. R. J. Klein, C. Hallden, A. Gupta et al., “Evaluation of multiple risk-associated single nucleotide polymorphisms versus prostate-specific antigen at baseline to predict prostate cancer in unscreened men,” European Urology, vol. 61, no. 3, pp. 471–477, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. R. K. Nam, W. W. Zhang, J. Trachtenberg et al., “Utility of incorporating genetic variants for the early detection of prostate cancer,” Clinical Cancer Research, vol. 15, no. 5, pp. 1787–1793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Aly, F. Wiklund, J. Xu et al., “Polygenic risk score improves prostate cancer risk prediction: results from the Stockholm-1 cohort study,” European Urology, vol. 60, no. 1, pp. 21–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Xu, C. Valtonen-André, C. Sävblom, C. Halldén, H. Lilja, and R. J. Klein, “Polymorphisms at the microseminoprotein-β locus associated with physiologic variation in β-microseminoprotein and prostate-specific antigen levels,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 8, pp. 2035–2042, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. J. Klein, C. Halldén, A. M. Cronin et al., “Blood biomarker levels to aid discovery of cancer-related single-nucleotide polymorphisms: Kallikreins and prostate cancer,” Cancer Prevention Research, vol. 3, no. 5, pp. 611–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Clinckemalie, L. Spans, V. Dubois et al., “Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an Androgen Response Element,” Molecular Endocrinology, vol. 27, no. 12, pp. 2028–2040, 2013. View at Google Scholar
  46. A. Bansal, D. K. Murray, J. T. Wu, R. A. Stephenson, R. G. Middleton, and A. W. Meikle, “Heritability of prostate-specific antigen and relationship with zonal prostate volumes in aging twins,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 3, pp. 1272–1276, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Gudmundsson, S. Besenbacher, P. Sulem et al., “Genetic correction of PSA values using sequence variants associated with PSA levels,” Science Translational Medicine, vol. 2, no. 62, Article ID 62ra92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Loeb, H. B. Carter, P. C. Walsh et al., “Single nucleotide polymorphisms and the likelihood of prostate cancer at a given prostate specific antigen level,” Journal of Urology, vol. 182, no. 1, pp. 101–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. B. T. Helfand, S. Loeb, Q. Hu et al., “Personalized prostate specific antigen testing using genetic variants may reduce unnecessary prostate biopsies,” Journal of Urology, vol. 189, no. 5, pp. 1697–1701, 2013. View at Google Scholar
  50. M. R. Cooperberg, P. R. Carroll, and L. Klotz, “Active surveillance for prostate cancer: progress and promise,” Journal of Clinical Oncology, vol. 29, no. 27, pp. 3669–3676, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. R. Rider, F. Sandin, O. Andrén, P. Wiklund, J. Hugosson, and P. Stattin, “Long-term outcomes among noncuratively treated men according to prostate cancer risk category in a nationwide, population-based study,” European Urology, vol. 63, no. 1, pp. 88–96, 2013. View at Google Scholar
  52. O. Akre, H. Garmo, J. Adolfsson, M. Lambe, O. Bratt, and P. Stattin, “Mortality among men with locally advanced prostate cancer managed with noncurative intent: a nationwide study in PCBaSe Sweden,” European Urology, vol. 60, no. 3, pp. 554–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. M. R. Cooperberg, J. Cowan, J. M. Broering, and P. R. Carroll, “High-risk prostate cancer in the United States, 1990–2007,” World Journal of Urology, vol. 26, no. 3, pp. 211–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Briganti, S. Joniau, P. Gontero et al., “Identifying the best candidate for radical prostatectomy among patients with high-risk prostate cancer,” European Urology, vol. 61, no. 3, pp. 584–592, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Joniau, C.-Y. Hsu, E. Lerut et al., “A pretreatment table for the prediction of final histopathology after radical prostatectomy in clinical unilateral T3a prostate cancer,” European Urology, vol. 51, no. 2, pp. 388–394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Spahn, S. Joniau, P. Gontero et al., “Outcome predictors of radical prostatectomy in patients with prostate-specific antigen greater than 20 ng/ml: a European multi-institutional study of 712 patients,” European Urology, vol. 58, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. R. S. Svatek, C. Jeldres, P. I. Karakiewicz et al., “Pre-treatment biomarker levels improve the accuracy of post-prostatectomy nomogram for prediction of biochemical recurrence,” Prostate, vol. 69, no. 8, pp. 886–894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. A. Perez, H. Chen, Y. Shyr et al., “The EGFR polymorphism rs884419 is associated with freedom from recurrence in patients with resected prostate cancer,” Journal of Urology, vol. 183, no. 5, pp. 2062–2069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S.-P. Huang, L.-C. Huang, W.-C. Ting et al., “Prognostic significance of prostate cancer susceptibility variants on prostate-specific antigen recurrence after radical prostatectomy,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 11, pp. 3068–3074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. É. Audet-Walsh, J. Bellemare, L. Lacombe et al., “The impact of germline genetic variations in hydroxysteroid (17-Beta) dehydrogenases on prostate cancer outcomes after prostatectomy,” European Urology, vol. 62, no. 1, pp. 88–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Audet-Walsh, J. Bellemare, G. Nadeau et al., “SRD5A polymorphisms and biochemical failure after radical prostatectomy,” European Urology, vol. 60, no. 6, pp. 1226–1234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Cotignola, D. B. Leonardi, A. Shahabi et al., “Glutathione-S-transferase (GST) polymorphisms are associated with relapse after radical prostatectomy,” Prostate Cancer and Prostatic Diseases, vol. 16, no. 1, pp. 28–34, 2013. View at Google Scholar
  63. P. J. Dluzniewski, M.-H. Wang, S. L. Zheng et al., “Variation in IL10 and other genes involved in the immune response and in oxidation and prostate cancer recurrence,” Cancer Epidemiology, Biomarkers & Prevention, vol. 21, no. 10, pp. 1774–1782, 2012. View at Google Scholar
  64. S.-P. Huang, W.-C. Ting, L.-M. Chen et al., “Association analysis of Wnt pathway genes on prostate-specific antigen recurrence after radical prostatectomy,” Annals of Surgical Oncology, vol. 17, no. 1, pp. 312–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. C.-F. Chang, J.-B. Pao, C.-C. Yu et al., “Common variants in IGF1 pathway genes and clinical outcomes after radical prostatectomy,” Annals of Surgical Oncology, vol. 20, no. 7, pp. 2446–2452, 2013. View at Google Scholar
  66. S.-P. Huang, Y.-H. Lan, T.-L. Lu et al., “Clinical significance of runt-related transcription factor 1 polymorphism in prostate cancer,” BJU International, vol. 107, no. 3, pp. 486–492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. J. J. Jaboin, M. Hwang, Z. Lopater et al., “The matrix metalloproteinase-7 polymorphism RS10895304 is associated with increased recurrence risk in patients with clinically localized prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 79, no. 5, pp. 1330–1335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. W. Wang, T. Yuasa, N. Tsuchiya et al., “The novel tumor-suppressor Mel-18 in prostate cancer: its functional polymorphism, expression and clinical significance,” International Journal of Cancer, vol. 125, no. 12, pp. 2836–2843, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. H. S. Bachmann, L. C. Heukamp, K. J. Schmitz et al., “Regulatory BCL2 promoter polymorphism (−938C>A) is associated with adverse outcome in patients with prostate carcinoma,” International Journal of Cancer, vol. 129, no. 10, pp. 2390–2399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Hirata, Y. Hinoda, N. Kikuno et al., “Bcl2 -938C/A polymorphism carries increased risk of biochemical recurrence after radical prostatectomy,” Journal of Urology, vol. 181, no. 4, pp. 1907–1912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Morote, J. Del Amo, A. Borque et al., “Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms,” Journal of Urology, vol. 184, no. 2, pp. 506–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. Á. Borque, J. del Amo, L. M. Esteban et al., “Genetic predisposition to early recurrence in clinically localized prostate cancer,” BJU International, vol. 111, no. 4, pp. 549–558, 2013. View at Google Scholar
  73. T. Langsenlehner, W. Renner, A. Gerger et al., “Association between single nucleotide polymorphisms in the gene for XRCC1 and radiation-induced late toxicity in prostate cancer patients,” Radiotherapy and Oncology, vol. 98, no. 3, pp. 387–393, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. O. Zschenker, A. Raabe, I. K. Boeckelmann et al., “Association of single nucleotide polymorphisms in ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with clinical and cellular radiosensitivity,” Radiotherapy and Oncology, vol. 97, no. 1, pp. 26–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Azria, M. Betz, C. Bourgier, W. J. Sozzi, and M. Ozsahin, “Identifying patients at risk for late radiation-induced toxicity,” Critical Reviews in Oncology/Hematology, vol. 84, supplement 1, pp. e35–e41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. G. C. Barnett, C. M. L. West, A. M. Dunning et al., “Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype,” Nature Reviews Cancer, vol. 9, no. 2, pp. 134–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Damaraju, D. Murray, J. Dufour et al., “Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer,” Clinical Cancer Research, vol. 12, no. 8, pp. 2545–2554, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. S. De Langhe, K. De Ruyck, P. Ost et al., “Acute radiation-induced nocturia in prostate cancer patients is associated with pretreatment symptoms, radical prostatectomy, and genetic markers in the TGFβ1 gene,” International Journal of Radiation Oncology*Biology*Physics, vol. 85, no. 2, pp. 393–399, 2013. View at Google Scholar
  79. L. Fachal, A. G. Gómez-Caamaño, P. Peleteiro et al., “Association of a XRCC3 polymorphism and rectum mean dose with the risk of acute radio-induced gastrointestinal toxicity in prostate cancer patients,” Radiotherapy & Oncology, vol. 105, no. 3, pp. 321–328, 2012. View at Google Scholar
  80. L. Fachal, A. Gómez-Caamaño, M. Sánchez-García et al., “TGFβ1 SNPs and radio-induced toxicity in prostate cancer patients,” Radiotherapy and Oncology, vol. 103, no. 2, pp. 206–209, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. O. Popanda, J. U. Marquardt, J. Chang-Claude, and P. Schmezer, “Genetic variation in normal tissue toxicity induced by ionizing radiation,” Mutation Research, vol. 667, no. 1-2, pp. 58–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Suga, M. Iwakawa, H. Tsuji et al., “Influence of multiple genetic polymorphisms on genitourinary morbidity after carbon ion radiotherapy for prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 72, no. 3, pp. 808–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. M. B. Parliament and D. Murray, “Single nucleotide polymorphisms of DNA repair genes as predictors of radioresponse,” Seminars in Radiation Oncology, vol. 20, no. 4, pp. 232–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. J. A. Cesaretti, R. G. Stock, D. P. Atencio et al., “A Genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy,” International Journal of Radiation Oncology Biology Physics, vol. 68, no. 5, pp. 1410–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. J. A. Cesaretti, R. G. Stock, S. Lehrer et al., “ATM sequence variants are predictive of adverse radiotherapy response among patients treated for prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 61, no. 1, pp. 196–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. C. A. Peters, R. G. Stock, J. A. Cesaretti et al., “TGFB1 single nucleotide polymorphisms are associated with adverse quality of life in prostate cancer patients treated with radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 3, pp. 752–759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Pugh, M. Keyes, L. Barclay et al., “Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients,” Clinical Cancer Research, vol. 15, no. 15, pp. 5008–5016, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. R. J. Burri, R. G. Stock, J. A. Cesaretti et al., “Association of single nucleotide polymorphisms in SOD2, XRCC1 and XRCC3 with susceptibility for the development of adverse effects resulting from radiotherapy for prostate cancer,” Radiation Research, vol. 170, no. 1, pp. 49–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. G. C. Barnett, C. E. Coles, R. M. Elliott et al., “Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study,” The Lancet Oncology, vol. 13, no. 1, pp. 65–77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. N. J. Vogelzang, G. W. Chodak, M. S. Soloway et al., “Goserelin versus orchiectomy in the treatment of advanced prostate cancer: final results of a randomized trial,” Urology, vol. 46, no. 2, pp. 220–226, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. M. S. Soloway, G. Chodak, N. J. Vogelzang et al., “Zoladex versus orchiectomy in treatment of advanced prostate cancer: a randomized trial,” Urology, vol. 37, no. 1, pp. 46–51, 1991. View at Google Scholar · View at Scopus
  92. J. Seidenfeld, D. J. Samson, V. Hasselblad et al., “Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis,” Annals of Internal Medicine, vol. 132, no. 7, pp. 566–577, 2000. View at Google Scholar · View at Scopus
  93. K. J. Pienta and D. Bradley, “Mechanisms underlying the development of androgen-independent prostate cancer,” Clinical Cancer Research, vol. 12, no. 6, pp. 1665–1671, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. T. K. Choueiri, W. Xie, A. V. D'Amico et al., “Time to prostate-specific antigen nadir independently predicts overall survival in patients who have metastatic hormone-sensitive prostate cancer treated with androgen-deprivation therapy,” Cancer, vol. 115, no. 5, pp. 981–987, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Hussain, C. M. Tangen, C. Higano et al., “Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group trial 9346 (INT-0162),” Journal of Clinical Oncology, vol. 24, no. 24, pp. 3984–3990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. A. J. Stewart, H. I. Scher, M.-H. Chen et al., “Prostate-specific antigen nadir and cancer-specific mortality following hormonal therapy for prostate-specific antigen failure,” Journal of Clinical Oncology, vol. 23, no. 27, pp. 6556–6560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. R. W. Ross, W. K. Oh, W. Xie et al., “Inherited variation in the androgen pathway is associated with the efficacy of androgen-deprivation therapy in men with prostate cancer,” Journal of Clinical Oncology, vol. 26, no. 6, pp. 842–847, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. B.-L. Chang, S. L. Zheng, G. A. Hawkins et al., “Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility,” Cancer Research, vol. 62, no. 6, pp. 1784–1789, 2002. View at Google Scholar · View at Scopus
  99. L. True, I. Coleman, S. Hawley et al., “A molecular correlate to the Gleason grading system for prostate adenocarcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 29, pp. 10991–10996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. A. L. Teixeira, R. Ribeiro, D. Cardoso et al., “Genetic polymorphism in EGF Is associated with prostate cancer aggressiveness and progression-free interval in androgen blockade-treated patients,” Clinical Cancer Research, vol. 14, no. 11, pp. 3367–3371, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Yang, W. Xie, E. Mostaghel et al., “SLCO2B1 and SLCO1B3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer,” Journal of Clinical Oncology, vol. 29, no. 18, pp. 2565–2573, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. A. L. Teixeira, M. Gomes, A. Nogueira et al., “Improvement of a predictive model of castration-resistant prostate cancer: functional genetic variants in TGFβ1 signaling pathway modulation,” PLoS One, vol. 8, no. 8, Article ID e72419, 2013. View at Google Scholar
  103. M. Kohli, S. M. Riska, D. W. Mahoney et al., “Germline predictors of androgen deprivation therapy response in advanced prostate cancer,” Mayo Clinic Proceedings, vol. 87, no. 3, pp. 240–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. B.-Y. Bao, J.-B. Pao, C.-N. Huang et al., “Polymorphisms inside MicroRNAs and MicroRNA target sites predict clinical outcomes in prostate cancer patients receiving androgen-deprivation therapy,” Clinical Cancer Research, vol. 17, no. 4, pp. 928–936, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. C.-N. Huang, S.-P. Huang, J.-B. Pao et al., “Genetic polymorphisms in androgen receptor-binding sites predict survival in prostate cancer patients receiving androgen-deprivation therapy,” Annals of Oncology, vol. 23, no. 3, pp. 707–713, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. C.-N. Huang, S.-P. Huang, J.-B. Pao et al., “Genetic polymorphisms in oestrogen receptor-binding sites affect clinical outcomes in patients with prostate cancer receiving androgen-deprivation therapy,” Journal of Internal Medicine, vol. 271, no. 5, pp. 499–509, 2012. View at Publisher · View at Google Scholar · View at Scopus
  107. S. P. Huang, B. Bao, T. Hour et al., “Genetic variants in CASP3, BMP5, and IRS2 genes may influence survival in prostate cancer patients receiving androgen-deprivation therapy,” PLoS One, vol. 7, no. 7, Article ID e41219, 2012. View at Google Scholar
  108. N. Tsuchiya, S. Narita, T. Inoue et al., “Insulin-like growth factor-1 genotypes and haplotypes influence the survival of prostate cancer patients with bone metastasis at initial diagnosis,” BMC Cancer, vol. 13, no. 1, article150, 2013. View at Google Scholar
  109. I. F. Tannock, R. De Wit, W. R. Berry et al., “Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer,” The New England Journal of Medicine, vol. 351, no. 15, pp. 1502–1512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. D. P. Petrylak, C. M. Tangen, M. H. A. Hussain et al., “Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer,” The New England Journal of Medicine, vol. 351, no. 15, pp. 1513–1520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Bruno, N. Vivier, C. Veyrat-Follet, G. Montay, and G. R. Rhodes, “Population pharmacokinetics and pharmacokinetic-pharmacodynamic relationships for docetaxel,” Investigational New Drugs, vol. 19, no. 2, pp. 163–169, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. I. Pastina, E. Giovannetti, A. Chioni et al., “Cytochrome 450 1B1 (CYP1B1) polymorphisms associated with response to docetaxel in Castration-Resistant Prostate Cancer (CRPC) patients,” BMC Cancer, vol. 10, article 511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. T. M. Sissung, R. Danesi, D. K. Price et al., “Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel,” Molecular Cancer Therapeutics, vol. 7, no. 1, pp. 19–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. T. M. Sissung, C. E. Baum, J. Deeken et al., “ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel,” Clinical Cancer Research, vol. 14, no. 14, pp. 4543–4549, 2008. View at Publisher · View at Google Scholar · View at Scopus