Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 634945, 16 pages
http://dx.doi.org/10.1155/2014/634945
Research Article

Evaluation of Correlation of Cell Cycle Proteins and Ki-67 Interaction in Paranasal Sinus Inverted Papilloma Prognosis and Squamous Cell Carcinoma Transformation

1Department of Otolaryngology Head and Neck Surgery, China Medical University, Taichung 40402, Taiwan
2Department of Medicine, School of Medicine, China Medical University, Taichung 40402, Taiwan
3Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
4Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
5Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
6Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
7Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan

Received 22 February 2014; Revised 5 March 2014; Accepted 5 March 2014; Published 12 June 2014

Academic Editor: Chung Y. Hsu

Copyright © 2014 Yung-An Tsou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Lawson and Z. M. Patel, “The evolution of management for inverted papilloma: an analysis of 200 cases,” Otolaryngology—Head and Neck Surgery, vol. 140, no. 3, pp. 330–335, 2009. View at Publisher · View at Google Scholar
  2. K. C. Chen, S. S. Chang, H. J. Huang, T. Lin, Y. Wu, and C. Y. Chen, “Three-in-one agonists for PPAR-α, PPAR-γ, and PPAR-δ from traditional Chinese medicine,” Journal of Biomolecular Structure and Dynamics, vol. 30, no. 6, pp. 662–683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Mumbuc, M. Karakok, T. Baglam, E. Karatas, C. Durucu, and Y. Kibar, “Immunohistochemical analysis of PCNA, Ki67 and p53 in nasal polyposis and sinonasal inverted papillomas,” Journal of International Medical Research, vol. 35, no. 2, pp. 237–241, 2007. View at Google Scholar · View at Scopus
  4. P. Strojan, A. Ferlito, V. J. Lund et al., “Sinonasal inverted papilloma associated with malignancy: the role of human papillomavirus infection and its implications for radiotherapy,” Oral Oncology, vol. 48, no. 3, pp. 216–218, 2012. View at Publisher · View at Google Scholar
  5. E. Giotakis, I. P. Gomatos, L. Alevizos et al., “Apoptotic and proliferative status in HPV (+) and HPV (-) inverted papilloma patients. Correlation with local recurrence and clinicopathological variables,” Pathology Research and Practice, vol. 208, no. 6, pp. 338–343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Saegusa, H. Nitta, M. Hashimura, and I. Okayasu, “Down-regulation of p27(Kip1) expression is correlated with increased cell proliferation but not expression of p21(waf1) and p53, and human papillomavirus infection in benign and malignant tumours of sinonasal regions,” Histopathology, vol. 35, no. 1, pp. 55–64, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Schwerer, A. Sailer, K. Kraft, K. Baczako, and H. Maier, “Patterns of p21waf1/cip1 expression in non-papillomatous nasal mucosa, endophytic sinonasal papillomas, and associated carcinomas,” Journal of Clinical Pathology, vol. 54, no. 11, pp. 871–876, 2001. View at Google Scholar · View at Scopus
  8. G. Altavilla, A. Staffieri, G. Busatto, A. Canesso, L. Giacomelli, and G. Marioni, “Expression of p53, p16INK4A, pRb, p21WAF1/CIP1, p27KIP1, cyclin D1, Ki-67 and HPV DNA in sinonasal endophytic Schneiderian (inverted) papilloma,” Acta Oto-Laryngologica, vol. 129, no. 11, pp. 1242–1249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Buiret, X. Montbarbon, B. Fleury et al., “Inverted papilloma with associated carcinoma of the nasal cavity and paranasal sinuses: treatment outcomes,” Acta Oto-Laryngologica, vol. 132, no. 1, pp. 80–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Santamaría, C. Barrière, A. Cerqueira et al., “Cdk1 is sufficient to drive the mammalian cell cycle,” Nature, vol. 448, no. 7155, pp. 811–815, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Oncel, T. Cosgul, A. Calli, C. Calli, and E. Pinar, “Evaluation of P53, P63, P21, P27, Ki-67 in Paranasal Sinus Squamous Cell Carcinoma and Inverted Papilloma,” Indian Journal of Otolaryngology and Head and Neck Surgery, vol. 63, no. 2, pp. 172–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Masubuchi, Y. Tada, S. I. Maruya et al., “Clinicopathological significance of androgen receptor, HER2, Ki-67 and EGFR expressions in salivary duct carcinoma,” International Journal of Clinical Oncology, 2014. View at Publisher · View at Google Scholar
  13. M. Ekholm, S. Beglerbegovic, D. Grabau et al., “Immunohistochemical assessment of Ki67 with antibodies SP6 and MIB1 in primary breast cancer: a comparison of prognostic value and reproducibility,” Histopathology, 2014. View at Publisher · View at Google Scholar
  14. K. Hellman, D. Lindquist, C. Ranhem, E. Wilander, and S. Andersson, “Human papillomavirus, p16, and Ki-67 in relation to clinicopathological variables and survival in primary carcinoma of the vagina,” The British Journal of Cancer, vol. 110, no. 6, pp. 1561–1570, 2014. View at Publisher · View at Google Scholar
  15. I. Y. Shin, N. Y. Sung, Y. S. Lee et al., “The expression of multiple proteins as prognostic factors in colorectal cancer: cathepsin D, p53, COX-2, epidermal growth factor receptor, C-erbB-2, and Ki-67,” Gut Liver, vol. 8, no. 1, pp. 13–23, 2014. View at Publisher · View at Google Scholar
  16. Y. He, G. Zhou, Y. Zhai et al., “Association of PLUNC gene polymorphisms with susceptibility to nasopharyngeal carcinoma in a Chinese population,” Journal of Medical Genetics, vol. 42, no. 2, pp. 172–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. A. Tsou, M. T. Peng, Y. F. Wu et al., “Decreased PLUNC expression in nasal polyps is associated with multibacterial colonization in chronic rhinosinusitis patients,” European Archives of Oto-Rhino-Laryngology, vol. 271, no. 2, pp. 299–304, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. Accelerys, Discovery Studio Client v2.5, Accelrys, Inc., San Diego, Calif, USA, 2009.
  19. S. Pronk, S. Páll, R. Schulz et al., “GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit,” Bioinformatics, vol. 29, no. 7, pp. 845–854, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Sciarretta, I. J. Fernandez, P. Farneti, and E. Pasquini, “Endoscopic and combined external-transnasal endoscopic approach for the treatment of inverted papilloma: analysis of 110 cases,” European Archives of Oto-Rhino-Laryngology, 2013. View at Publisher · View at Google Scholar
  21. M. J. Schwerer, A. Sailer, K. Kraft, and H. Maier, “Cell proliferation and p27Kip1 expression in endophytic schneiderian papillomas,” Laryngoscope, vol. 112, no. 5, pp. 852–857, 2002. View at Google Scholar · View at Scopus
  22. H. Katori, A. Nozawa, and M. Tsukuda, “Relationship between p21 and p53 expression, human papilloma virus infection and malignant transformation in sinonasal-inverted papilloma,” Clinical Oncology, vol. 18, no. 4, pp. 300–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Gujrathi, I. Pathak, J. Freeman, and S. Asa, “Expression of p53 in inverted papilloma and malignancy associated with inverted papilloma,” Journal of Otolaryngology, vol. 32, no. 1, pp. 48–50, 2003. View at Google Scholar · View at Scopus
  24. S. Gunia, F. Fritzsche, M. May, D. Liebe, and S. Koch, “Do different disorders in cell cycle regulation account for different biological behavior of urothelial and sinonasal inverted papillomas?” Pathobiology, vol. 75, no. 1, pp. 34–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Affolter, S. Helmbrecht, S. Finger, K. Hörmann, and K. Götte, “Altered expression of cell cycle regulators p21, p27, and p53 in tumors of salivary glands and paranasal sinuses,” Oncology Reports, vol. 13, no. 6, pp. 1089–1094, 2005. View at Google Scholar · View at Scopus
  26. I. J. Byeon, H. Li, H. Song, A. M. Gronenborn, and M. D. Tsai, “Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67,” Nature Structural and Molecular Biology, vol. 12, no. 11, pp. 987–993, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. R. Choi, S. A. Tucker, Z. Huang et al., “Differential expressions of cyclin-dependent kinase inhibitors (p27 and p21) and their relation to p53 and Ki-67 in oral squamous tumorigenesis,” International Journal of Oncology, vol. 22, no. 2, pp. 409–414, 2003. View at Google Scholar · View at Scopus
  28. N. Keleş, B. Erdamar, A. Kaur, and K. Deǧer, “p21, p53, and p27 Kip1 alterations in benign and malignant tumors of sinonasal epithelium,” Otolaryngology—Head and Neck Surgery, vol. 129, no. 1, pp. 77–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. A. Tsou, C. M. Chen, T. C. Lin et al., “Decreased SPLUNC1 expression is associated with Pseudomonas infection in surgically treated chronic rhinosinusitis patients who may require repeated sinus surgery,” Laryngoscope, vol. 123, no. 4, pp. 845–851, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Balakrishnan, S. A. Marathe, M. Joglekar, and D. Chakravortty, “Bactericidal/permeability increasing protein: a multifaceted protein with functions beyond LPS neutralization,” Innate Immunity, vol. 19, no. 4, pp. 339–347, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Gakhar, J. A. Bartlett, J. Penterman et al., “PLUNC is a novel airway surfactant protein with anti-biofilm activity,” PLoS ONE, vol. 5, no. 2, Article ID e9098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Zhou, Z. Zeng, W. Zhang et al., “Identification of candidate molecular markers of nasopharyngeal carcinoma by microarray analysis of subtracted cDNA libraries constructed by suppression subtractive hybridization,” European Journal of Cancer Prevention, vol. 17, no. 6, pp. 561–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S.-C. Hsu, J.-H. Lin, S.-W. Weng et al., “Crude extract of Rheum palmatum inhibits migration and invasion of U-2 OS human osteosarcoma cells by suppression of matrix metalloproteinase-2 and -9,” BioMedicine, vol. 3, no. 3, pp. 120–129, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. W.-Y. Lin, H.-P. Liu, J.-S. Chang et al., “Genetic variations within the PSORS1 region affect Kawasaki disease development and coronary artery aneurysm formation,” BioMedicine, vol. 3, no. 2, pp. 73–81, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. W.-L. Liao and F.-J. Tsai, “Personalized medicine: a paradigm shift in healthcare,” BioMedicine, vol. 3, no. 2, pp. 66–72, 2013. View at Publisher · View at Google Scholar · View at Scopus