Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 639896, 6 pages
http://dx.doi.org/10.1155/2014/639896
Research Article

The c-MYC Protooncogene Expression in Cholesteatoma

1Department of Otorhinolaryngology Head and Neck Surgery, B-A-Z County Hospital and University Hospital, Szentpéteri Kapu 72-76, Miskolc 3526, Hungary
2Department of Biochemistry and Molecular Biology Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Nagyerdei Körút 98, Debrecen 4032, Hungary
3Department of Otorhinolaryngology, Children’s Hospital Heim Pál, Üllői Ut 86, Budapest 1083, Hungary
4Department of Otorhinolaryngology Head and Neck Surgery, Military Hospital, Podmaniczky Utca 109-111, Budapest 1062, Hungary
5Department of Human Genetics, University of Debrecen, Medical and Health Science Center, Nagyerdei Körút 98, Debrecen 4032, Hungary
6Department of Otorhinolaryngology, Head and Neck Surgery, University of Debrecen, Medical and Health Science Center, Nagyerdei Körút 98, Debrecen 4032, Hungary

Received 30 August 2013; Revised 13 December 2013; Accepted 21 December 2013; Published 10 February 2014

Academic Editor: Steffen Maune

Copyright © 2014 Enikő Palkó et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Ars and N. Ars-Piret, “Dynamics of the organogenesis of the middle ear structures. Anatomical variants,” in Middle Ear Structures, Organogenesis and Congenital Defects, B. Ars and P. Van Cauwenberge, Eds., pp. 11–25, Kugler, Amsterdam, The Netherlands, 1991. View at Google Scholar
  2. F. Ottaviani, C. B. Neglia, and E. Berti, “Cytokines and adhesion molecules in middle ear cholesteatoma. A role in epithelial growth?” Acta Oto-Laryngologica, vol. 119, no. 4, pp. 462–467, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Répássy, “Ear, nose & throat and head neck surgery,” in Diseases of External Ear, J. Pytel, Ed., pp. 81–92, Medicina, Budapest, Hungary, 2011. View at Google Scholar
  4. P. H. Mckee, E. Calonje, and R. S. Granter, Pathology of the Skin with Clinical Correlations, Mosby, Philadelphia, Pa, USA, 3rd edition, 2005.
  5. M. Hamzei, G. Ventriglia, M. Hagnia et al., “Osteoclast stimulating and differentiating factors in human cholesteatoma,” The Laryngoscope, vol. 113, no. 3, pp. 436–442, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Tokuriki, I. Noda, T. Saito et al., “Gene expression analysis of human middle ear cholesteatoma using complementary DNA arrays,” The Laryngoscope, vol. 113, no. 5, pp. 808–814, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Sudhoff, S. Dazert, A. M. Gonzales et al., “Angiogenesis and angiogenic growth factors in middle ear cholesteatoma,” The American Journal of Otology, vol. 21, no. 6, pp. 793–798, 2000. View at Google Scholar · View at Scopus
  8. Y. Mallet, J. Nouwen, M. Lecomte-Houcke, and A. Desaulty, “Aggressiveness and quantification of epithelial proliferation of middle ear cholesteatoma by MIB1,” The Laryngoscope, vol. 113, no. 2, pp. 328–331, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. S. Yildirim, K. Ozturk, H. Acar, H. Arbag, and C. H. Ulku, “Chromosome 8 aneuploidy in acquired cholesteatoma,” Acta Oto-Laryngologica, vol. 123, no. 3, pp. 372–376, 2003. View at Google Scholar · View at Scopus
  10. S. Z. Ecsedi, Z. S. Rákosy, L. Vízkeleti et al., “Chromosomal imbalances are associated with increased proliferation and might contribute to bone destruction in cholesteatoma,” Otolaryngology, vol. 139, no. 5, pp. 635–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Ozturk, M. S. Yildirim, H. Acar, Z. Cenik, and B. Keles, “Evaluation of c-MYC status in primary acquired cholesteatoma by using fluorescence in situ hybridization technique,” Otology & Neurotology, vol. 27, no. 5, pp. 588–591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Holly, M. Sittinger, and J. Bujia, “Immunohistochemical demonstration of c-myc oncogene product in middle ear cholesteatoma,” European Archives of Oto-Rhino-Laryngology, vol. 252, no. 6, pp. 366–369, 1995. View at Google Scholar · View at Scopus
  13. F. Mertens, B. Johansson, M. Höglund, and F. Mitelman, “Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms,” Cancer Research, vol. 57, no. 13, pp. 2765–2780, 1997. View at Google Scholar · View at Scopus
  14. I. B. I. Laurendeau, S. Tozlu, M. Olivi, D. Vidaud, R. Lidereau, and M. Vidaud, “Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay,” Cancer Research, vol. 59, no. 12, pp. 2759–2765, 1999. View at Google Scholar · View at Scopus
  15. J. Bujía, C. Kim, D. Boyle, C. Hammer, G. Firestein, and E. Kastenbauer, “Quantitative analysis of interleukin-1-alpha gene expression in middle ear cholesteatoma,” The Laryngoscope, vol. 106, no. 2 I, pp. 217–220, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Huang, S.-D. Yan, and C.-C. Huang, “Colony-stimulating factor in middle ear cholesteatoma,” American Journal of Otolaryngology, vol. 10, no. 6, pp. 393–398, 1989. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Bujía, C. Kim, P. Ostos, E. Kastenbauer, and L. Hültner, “Role of interleukin 6 in epithelial hyperproliferation and bone resorption in middle ear cholesteatomas,” European Archives of Oto-Rhino-Laryngology, vol. 253, no. 3, pp. 152–157, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. H.-J. Welkoborsky, R. S. Jacob, and M. L. Hinni, “Comparative analysis of the epithelium stroma interaction of acquired middle ear cholesteatoma in children and adults,” European Archives of Oto-Rhino-Laryngology, vol. 264, no. 8, pp. 841–848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Albino, J. A. Reed, J. K. Bogdany, J. Sassoon, R. B. Desloge, and S. C. Parisier, “Expression of p53 protein in human middle ear cholesteatomas. Pathogenetic implications,” The American Journal of Otology, vol. 19, no. 1, pp. 30–36, 1998. View at Google Scholar · View at Scopus
  20. A. Juhász, M. Balázs, I. Sziklay et al., “Chromosomal imbalances in laryngeal and hypopharyngeal cancers detected by comparative genomic hybridization,” Cytometry A, vol. 67, no. 2, pp. 151–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. T. D. Littlewood and G. I. Evan, “The role of myc oncogenes in cell growth and differentiation,” Advances in Dental Research, vol. 4, pp. 69–79, 1990. View at Google Scholar · View at Scopus
  22. D. W. Kamp, E. Shacter, and S. A. Weitzman, “Chronic inflammation and cancer: the role of the mitochondria,” Oncology, vol. 25, no. 5, pp. 400–413, 2011. View at Google Scholar · View at Scopus
  23. J. L. Schwartz, “Biomarkers and molecular epidemiology and chemoprevention of oral carcinogenesis,” Critical Reviews in Oral Biology & Medicine, vol. 11, no. 1, pp. 92–122, 2000. View at Google Scholar · View at Scopus
  24. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Rothschild, I. F. Ciernik, M. Hartmann, B. Schuknecht, U. M. Lütolf, and A. M. Huber, “Cholesteatoma triggering squamous cell carcinoma: case report and literature review of a rare tumor,” American Journal of Otolaryngology, vol. 30, no. 4, pp. 256–260, 2009. View at Publisher · View at Google Scholar · View at Scopus