Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 642916, 10 pages
http://dx.doi.org/10.1155/2014/642916
Review Article

The Potential of MicroRNAs in Personalized Medicine against Cancers

1Université Montpellier 1, 5 Bd Henri IV, 34967 Montpellier Cedex 2, France
2Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
3Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France
4Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

Received 7 June 2014; Accepted 6 August 2014; Published 28 August 2014

Academic Editor: Paolo Gandellini

Copyright © 2014 Anne Saumet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Teng and L. S. Acheson, “Genomics in primary care practice,” Primary Care, vol. 41, pp. 421–435, 2014. View at Google Scholar
  2. A. Rafii, C. Touboul, H. Al Thani, K. Suhre, and J. A. Malek, “Where cancer genomics should go next: a clinician's perspective,” Human Molecular Genetics, 2014. View at Publisher · View at Google Scholar
  3. L. Chin, J. N. Andersen, and P. A. Futreal, “Cancer genomics: from discovery science to personalized medicine,” Nature Medicine, vol. 17, no. 3, pp. 297–303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Dreussi, P. Biason, G. Toffoli, and E. Cecchin, “miRNA pharmacogenomics: the new frontier for personalized medicine in cancer?” Pharmacogenomics, vol. 13, no. 14, pp. 1635–1650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Fabbri, “MicroRNAs and cancer: towards a personalized medicine,” Current Molecular Medicine, vol. 13, no. 5, pp. 751–756, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Metias, E. Lianidou, and G. M. Yousef, “MicroRNAs in clinical oncology: at the crossroads between promises and problems,” Journal of Clinical Pathology, vol. 62, no. 9, pp. 771–776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kozomara and S. Griffiths-Jones, “miRBase: annotating high confidence microRNAs using deep sequencing data,” Nucleic Acids Research, vol. 42, pp. D68–D73, 2013. View at Publisher · View at Google Scholar
  8. S. L. Ameres and P. D. Zamore, “Diversifying microRNA sequence and function,” Nature Reviews Molecular Cell Biology, vol. 14, no. 8, pp. 475–488, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ghildiyal and P. D. Zamore, “Small silencing RNAs: an expanding universe,” Nature Reviews Genetics, vol. 10, no. 2, pp. 94–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Yates, C. J. Norbury, and R. J. C. Gilbert, “The long and short of microRNA,” Cell, vol. 153, no. 3, pp. 516–519, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Croce, “Causes and consequences of microRNA dysregulation in cancer,” Nature Reviews Genetics, vol. 10, no. 10, pp. 704–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Esteller, “Non-coding RNAs in human disease,” Nature Reviews Genetics, vol. 12, no. 12, pp. 861–874, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. V. Iorio, M. Ferracin, C.-G. Liu et al., “MicroRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, no. 16, pp. 7065–7070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Volinia, G. A. Calin, C. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Gyongyosi, O. Docs, Z. Czimmerer, L. Orosz, and A. Horvath, “Measuring expression levels of small regulatory RNA molecules from body fluids and formalin-fixed, paraffin-embedded samples,” Methods Molecular Biology, vol. 1182, pp. 105–119, 2014. View at Google Scholar
  20. J. R. Dijkstra, L. J. M. Mekenkamp, S. Teerenstra, I. de Krijger, and I. D. Nagtegaal, “MicroRNA expression in formalin-fixed paraffin embedded: tissue using real time quantitative PCR: the strengths and pitfalls,” Journal of Cellular and Molecular Medicine, vol. 16, no. 4, pp. 683–690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Cortez, C. Bueso-Ramos, J. Ferdin, G. Lopez-Berestein, A. K. Sood, and G. A. Calin, “MicroRNAs in body fluids—the mix of hormones and biomarkers,” Nature Reviews Clinical Oncology, vol. 8, no. 8, pp. 467–477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Etheridge, I. Lee, L. Hood, D. Galas, and K. Wang, “Extracellular microRNA: a new source of biomarkers,” Mutation Research, vol. 717, no. 1-2, pp. 85–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. M. Heneghan, N. Miller, A. J. Lowery, K. J. Sweeney, J. Newell, and M. J. Kerin, “Circulating microRNAs as novel minimally invasive biomarkers for breast cancer,” Annals of Surgery, vol. 251, no. 3, pp. 499–505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Garofalo and C. M. Croce, “MicroRNAs as therapeutic targets in chemoresistance,” Drug Resistance Updates, vol. 16, no. 3–5, pp. 47–59, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Zhang, L. Yang, Y. Zhu et al., “Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy,” Prostate, vol. 71, no. 3, pp. 326–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. H. M. Heneghan, N. Miller, and M. J. Kerin, “MiRNAs as biomarkers and therapeutic targets in cancer,” Current Opinion in Pharmacology, vol. 10, no. 5, pp. 543–550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Hauptman and D. Glavac, “MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer,” Radiology and Oncology, vol. 47, pp. 311–318, 2013. View at Google Scholar
  30. W. C. S. Cho, “MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 8, pp. 1273–1281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. S. Redis, I. Berindan-Neagoe, V. I. Pop, and G. A. Calin, “Non-coding RNAs as theranostics in human cancers,” Journal of Cellular Biochemistry, vol. 113, no. 5, pp. 1451–1459, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. V. N. Kim, J. Han, and M. C. Siomi, “Biogenesis of small RNAs in animals,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 126–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Krol, I. Loedige, and W. Filipowicz, “The widespread regulation of microRNA biogenesis, function and decay,” Nature Reviews Genetics, vol. 11, no. 9, pp. 597–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Tran and G. Hutvagner, “Biogenesis and the regulation of the maturation of miRNAs,” Essays in Biochemistry, vol. 54, no. 1, pp. 17–28, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Ha and V. N. Kim, “Regulation of microRNA biogenesis,” Nature Reviews Molecular Cell Biology, vol. 15, pp. 509–524, 2014. View at Publisher · View at Google Scholar
  36. A. M. Denli, B. B. J. Tops, R. H. A. Plasterk, R. F. Ketting, and G. J. Hannon, “Processing of primary microRNAs by the Microprocessor complex,” Nature, vol. 432, no. 7014, pp. 231–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates microRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Han, Y. Lee, K. Yeom, Y. Kim, H. Jin, and V. N. Kim, “The Drosha-DGCR8 complex in primary microRNA processing,” Genes and Development, vol. 18, no. 24, pp. 3016–3027, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Xie and J. A. Steitz, “Versatile microRNA biogenesis in animals and their viruses,” RNA Biology, vol. 11, no. 6, 2014. View at Google Scholar
  40. A. Brummer and J. Hausser, “MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation,” BioEssays, vol. 36, no. 6, pp. 617–626, 2014. View at Publisher · View at Google Scholar
  41. J. R. Lytle, T. A. Yario, and J. A. Steitz, “Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9667–9672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. JW. Nam, OS. Rissland, D. Koppstein, and et al, “Global analyses of the effect of different cellular contexts on microRNA targeting,” Molecular Cell, vol. 53, pp. 1031–1043, 2014. View at Google Scholar
  43. E. Huntzinger and E. Izaurralde, “Gene silencing by microRNAs: contributions of translational repression and mRNA decay,” Nature Reviews Genetics, vol. 12, no. 2, pp. 99–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Stroynowska-Czerwinska, A. Fiszer, and W. J. Krzyzosiak, “The panorama of miRNA-mediated mechanisms in mammalian cells,” Cellular and Molecular Life Sciences, vol. 71, pp. 2253–2270, 2014. View at Google Scholar
  45. A. Saumet, G. Vetter, M. Bouttier et al., “Estrogen and retinoic acid antagonistically regulate several microRNA genes to control aerobic glycolysis in breast cancer cells,” Molecular BioSystems, vol. 8, no. 12, pp. 3242–3253, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. K. K. Waltering, K. P. Porkka, S. E. Jalava et al., “Androgen regulation of micro-RNAs in prostate cancer,” The Prostate, vol. 71, no. 6, pp. 604–614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. W. W. Wang, N. Chatterjee, S. V. Chittur, J. Welsh, and M. P. Tenniswood, “Effects of 1α,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells,” Molecular Cancer, vol. 10, article 58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Kulshreshtha, M. Ferracin, S. E. Wojcik et al., “A microRNA signature of hypoxia,” Molecular and Cellular Biology, vol. 27, no. 5, pp. 1859–1867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Mao, R. Mohan, S. Zhang, and X. Tang, “MicroRNAs as pharmacological targets in diabetes,” Pharmacological Research, vol. 73, pp. 37–47, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Chen, L. Li, H. F. Lodish, and D. P. Bartel, “MicroRNAs modulate hematopoietic lineage differentiation,” Science, vol. 303, no. 5654, pp. 83–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. C. P. Morgan and T. L. Bale, “Sex differences in microRNA regulation of gene expression: no smoke, just miRs,” Biology of Sex Differences, vol. 3, no. 1, article 22, 2012. View at Publisher · View at Google Scholar
  52. S. Sharma and M. Eghbali, “Influence of sex differences on microRNA gene regulation in disease,” Biology of Sex Differences, vol. 5, no. 1, article 3, 2014. View at Google Scholar
  53. N. N. Hooten, K. Abdelmohsen, M. Gorospe, N. Ejiogu, A. B. Zonderman, and M. K. Evans, “microRNA expression patterns reveal differential expression of target genes with age,” PLoS ONE, vol. 5, no. 5, Article ID e10724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Noren Hooten, M. Fitzpatrick, W. H. Wood III et al., “Age-related changes in microRNA levels in serum,” Aging (Albany NY), vol. 5, pp. 725–740, 2013. View at Google Scholar
  55. C. Y. Lai, Y. T. Wu, S. L. Yu et al., “Modulated expression of human peripheral blood microRNAs from infancy to adulthood and its role in aging,” Aging Cell, vol. 13, no. 4, pp. 679–689, 2014. View at Google Scholar
  56. N. Pencheva and S. F. Tavazoie, “Control of metastatic progression by microRNA regulatory networks,” Nature Cell Biology, vol. 15, no. 6, pp. 546–554, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Li, A. Ahmad, D. Kong, B. Bao, and F. H. Sarkar, “Targeting microRNAs for personalized cancer therapy,” Medical Principles and Practice, vol. 22, pp. 415–417, 2013. View at Google Scholar
  58. C. Liu, K. Kelnar, B. Liu et al., “The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44,” Nature Medicine, vol. 17, no. 2, pp. 211–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. Q. Huang, K. Gumireddy, M. Schrier et al., “The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis,” Nature Cell Biology, vol. 10, no. 2, pp. 202–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Li, C. Qiu, J. Tu et al., “HMDD v2.0: a database for experimentally supported human microRNA and disease associations,” Nucleic Acids Research, vol. 42, pp. D1070–D1074, 2013. View at Google Scholar
  61. D. Wang, J. Gu, T. Wang, and Z. Ding, “OncomiRDB: a database for the experimentally verified oncogenic and tumor-suppressive microRNAs,” Bioinformatics, 2014. View at Publisher · View at Google Scholar
  62. L. He, J. M. Thomson, M. T. Hemann et al., “A microRNA polycistron as a potential human oncogene,” Nature, vol. 435, no. 7043, pp. 828–833, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. T. C. Chang, E. A. Wentzel, O. A. Kent et al., “Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis,” Molecular Cell, vol. 26, no. 5, pp. 745–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. D. G. Johnson, “The paradox of E2F1: oncogene and tumor suppressor gene,” Molecular Carcinogenesis, vol. 27, pp. 151–157, 2000. View at Google Scholar
  65. B. D. Rowland, R. Bernards, and D. S. Peeper, “The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene,” Nature Cell Biology, vol. 7, no. 11, pp. 1074–1082, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Liang and G. B. Mills, “AMPK: a contextual oncogene or tumor suppressor?” Cancer Research, vol. 73, no. 10, pp. 2929–2935, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Toker and Y. R. Chin, “Akt-ing up on SRPK1: oncogene or tumor suppressor?” Molecular Cell, vol. 54, pp. 329–330, 2014. View at Google Scholar
  68. C. Lobry, P. Oh, M. R. Mansour, A. T. Look, and I. Aifantis, “Notch signaling: switching an oncogene to a tumor suppressor,” Blood, vol. 123, pp. 2451–2459, 2014. View at Google Scholar
  69. N. Felli, L. Fontana, E. Pelosi et al., “MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18081–18086, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Pineau, S. Volinia, K. McJunkin et al., “miR-221 overexpression contributes to liver tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 264–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Fabbri, A. Bottoni, M. Shimizu et al., “Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of b-cell chronic lymphocytic leukemia,” The Journal of the American Medical Association, vol. 305, no. 1, pp. 59–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. M. V. Iorio and C. M. Croce, “Causes and consequences of MicroRNA dysregulation,” Cancer Journal, vol. 18, no. 3, pp. 215–222, 2012. View at Google Scholar · View at Scopus
  73. P. Lopez-Serra and M. Esteller, “DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer,” Oncogene, vol. 31, no. 13, pp. 1609–1622, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Zhang, J. Huang, N. Yang et al., “microRNAs exhibit high frequency genomic alterations in human cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9136–9141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Tagawa and M. Seto, “A microRNA cluster as a target of genomic amplification in malignant lymphoma,” Leukemia, vol. 19, no. 11, pp. 2013–2016, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Davalos and M. Esteller, “MicroRNAs and cancer epigenetics: a macrorevolution,” Current Opinion in Oncology, vol. 22, no. 1, pp. 35–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. Z. Wang, H. Yao, S. Lin et al., “Transcriptional and epigenetic regulation of human microRNAs,” Cancer Letters, vol. 331, no. 1, pp. 1–10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Saumet, G. Vetter, M. Bouttier et al., “Transcriptional repression of microRNA genes by PML-RARA increases expression of key cancer proteins in acute promyelocytic leukemia,” Blood, vol. 113, no. 2, pp. 412–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Hua, R. Kittler, and K. P. White, “Genomic antagonism between retinoic acid and estrogen signaling in breast cancer,” Cell, vol. 137, no. 7, pp. 1259–1271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. S. R. Viswanathan, G. Q. Daley, and R. I. Gregory, “Selective blockade of microRNA processing by Lin28,” Science, vol. 320, no. 5872, pp. 97–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Blenkiron, L. D. Goldstein, N. P. Thorne et al., “MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype,” Genome Biology, vol. 8, article R214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. K. A. Avery-Kiejda, S. G. Braye, J. F. Forbes, and R. J. Scott, “The expression of Dicer and Drosha in matched normal tissues, tumours and lymph node metastases in triple negative breast cancer,” BMC Cancer, vol. 14, article 253, 2014. View at Google Scholar
  84. G. Di Leva and C. M. Croce, “MiRNA profiling of cancer,” Current Opinion in Genetics and Development, vol. 23, no. 1, pp. 3–11, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. A. J. Lowery, N. Miller, A. Devaney et al., “MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer,” Breast Cancer Research, vol. 11, no. 3, article R27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. P. J. Mishra, D. Banerjee, and J. R. Bertino, “MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics,” Cell Cycle, vol. 7, no. 7, pp. 853–858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Landi, F. Gemignani, R. Barale, and S. Landi, “A catalog of polymorphisms falling in microRNA-binding regions of cancer genes,” DNA and Cell Biology, vol. 27, no. 1, pp. 35–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Duan, C. Pak, and P. Jin, “Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA,” Human Molecular Genetics, vol. 16, no. 9, pp. 1124–1131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. Hu, J. Chen, T. Tian et al., “Genetic variants of miRNA sequences and non-small cell lung cancer survival,” Journal of Clinical Investigation, vol. 118, no. 7, pp. 2600–2608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. Z. Hu, J. Liang, Z. Wang et al., “Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women,” Human Mutation, vol. 30, no. 1, pp. 79–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. A. E. Bruno, L. Li, J. L. Kalabus, Y. Pan, A. Yu, and Z. Hu, “miRdSNP: A database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes,” BMC Genomics, vol. 13, no. 1, article 44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Bhattacharya, J. D. Ziebarth, and Y. Cui, “SomamiR: a database for somatic mutations impacting microRNA function in cancer,” Nucleic Acids Research, vol. 41, no. D1, pp. D977–D982, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. M. P. Hamilton, K. Rajapakshe, S. M. Hartig et al., “Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif,” Nature Communications, vol. 4, article 2730, 2013. View at Google Scholar
  95. R. Sabarinathan, A. Wenzel, P. Novotny et al., “Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites,” PLoS ONE, vol. 9, Article ID e82699, 2014. View at Google Scholar
  96. C. Chen, D. A. Ridzon, A. J. Broomer et al., “Real-time quantification of microRNAs by stem-loop RT-PCR,” Nucleic Acids Research, vol. 33, no. 20, article e179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. M. R. Friedlander, E. Lizano, A. J. Houben et al., “Evidence for the biogenesis of more than 1,000 novel human microRNAs,” Genome Biology, vol. 15, article R57, 2014. View at Publisher · View at Google Scholar
  98. A. Kozomara and S. Griffiths-Jones, “MiRBase: integrating microRNA annotation and deep-sequencing data,” Nucleic Acids Research, vol. 39, no. 1, pp. D152–D157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. W. Zhou, M. Y. Fong, Y. Min, G. Somlo, and L. Liu, “Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis,” Cancer Cell, vol. 25, pp. 501–515, 2014. View at Google Scholar
  100. R. M. Drayton, E. Dudziec, S. Peter, S. Bertz, and A. Hartmann, “Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11,” Clinical Cancer Research, vol. 20, pp. 1990–2000, 2014. View at Google Scholar
  101. H. Wu, Z. Xiao, H. Zhang, K. Wang, W. Liu, and Q. Hao, “MiR-489 modulates cisplatin resistance in human ovarian cancer cells by targeting Akt3,” Anticancer Drugs, vol. 25, no. 7, pp. 799–809, 2014. View at Publisher · View at Google Scholar
  102. M. Yang, X. Shan, X. Zhou, T. Qiu, and W. Zhu, “miR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2,” Anti-Cancer Agents in Medicinal Chemistry, vol. 14, no. 6, pp. 884–891, 2014. View at Google Scholar
  103. M. Fabbri, A. Paone, F. Calore et al., “MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 31, pp. E2110–E2116, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. J. R. Chevillet, I. Lee, H. A. Briggs, Y. He, and K. Wang, “Issues and prospects of microRNA-based biomarkers in blood and other body fluids,” Molecules, vol. 19, pp. 6080–6105, 2014. View at Google Scholar
  105. J. D. Arroyo, J. R. Chevillet, E. M. Kroh et al., “Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 5003–5008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. K. C. Vickers, B. T. Palmisano, B. M. Shoucri, R. D. Shamburek, and A. T. Remaley, “MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins,” Nature Cell Biology, vol. 13, no. 4, pp. 423–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Ruepp, A. Kowarsch, and F. Theis, “PhenomiR: microRNAs in human diseases and biological processes,” Methods Molecular Biology, vol. 822, pp. 249–260, 2011. View at Google Scholar
  109. C. P. Goswami and H. Nakshatri, “PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data,” Journal of Clinical Bioinformatics, vol. 2, no. 1, article 23, 2013. View at Publisher · View at Google Scholar
  110. A. Lagana, S. Forte, A. Giudice et al., miRo: A miRNA Knowledge Base. Database, Oxford, UK, 2009.
  111. F. Russo, S. Di Bella, G. Nigita et al., “miRandola: extracellular circulating microRNAs database,” PLoS ONE, vol. 7, no. 10, Article ID e47786, 2012. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Jarry, D. Schadendorf, C. Greenwood, A. Spatz, and L. C. van Kempen, “The validity of circulating microRNAs in oncology: five years of challenges and contradictions,” Molecular Oncology, vol. 8, no. 4, pp. 819–829, 2014. View at Google Scholar
  113. R. S. Leidner, L. Li, and C. L. Thompson, “Dampening enthusiasm for circulating microRNA in breast cancer,” PLoS ONE, vol. 8, no. 3, Article ID e57841, 2013. View at Publisher · View at Google Scholar · View at Scopus
  114. N. Becker and C. M. Lockwood, “Pre-analytical variables in miRNA analysis,” Clinical Biochemistry, vol. 46, no. 10-11, pp. 861–868, 2013. View at Publisher · View at Google Scholar · View at Scopus
  115. K. W. Witwer, “Data submission and quality in microarray-based MicroRNA profiling,” Clinical Chemistry, vol. 59, no. 2, pp. 392–400, 2013. View at Publisher · View at Google Scholar · View at Scopus
  116. C. C. Pritchard, H. H. Cheng, and M. Tewari, “MicroRNA profiling: approaches and considerations,” Nature Reviews Genetics, vol. 13, no. 5, pp. 358–369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Wang, Y. Yuan, J. Cho, S. McClarty, D. Baxter, and D. J. Galas, “Comparing the MicroRNA spectrum between serum and plasma,” PLoS ONE, vol. 7, no. 7, Article ID e41561, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. H. H. Cheng, H. S. Yi, Y. Kim et al., “Plasma processing conditions substantially influence circulating microRNA biomarker levels,” PLoS ONE, vol. 8, no. 6, Article ID e64795, 2013. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Blondal, S. J. Nielsen, A. Baker et al., “Assessing sample and miRNA profile quality in serum and plasma or other biofluids,” Methods, vol. 59, no. 1, pp. S1–S6, 2013. View at Publisher · View at Google Scholar · View at Scopus
  120. M. B. Kirschner, S. C. Kao, J. J. Edelman et al., “Haemolysis during sample preparation alters microRNA content of plasma,” PLoS ONE, vol. 6, no. 9, Article ID e24145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. C. C. Pritchard, E. Kroh, B. Wood et al., “Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies,” Cancer Prevention Research, vol. 5, no. 3, pp. 492–497, 2012. View at Publisher · View at Google Scholar · View at Scopus
  122. M. B. Kirschner, J. J. Edelman, S. C. Kao et al., “The impact of hemolysis on cell-free microRNA biomarkers,” Frontiers in Genetics, vol. 4, article 94, 2013. View at Google Scholar
  123. G. Tzimagiorgis, E. Z. Michailidou, A. Kritis, A. K. Markopoulos, and S. Kouidou, “Recovering circulating extracellular or cell-free RNA from bodily fluids,” Cancer Epidemiology, vol. 35, no. 6, pp. 580–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. E. M. Kroh, R. K. Parkin, P. S. Mitchell, and M. Tewari, “Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR),” Methods, vol. 50, no. 4, pp. 298–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. Y. Kim, J. Yeo, B. Kim, M. Ha, and V. N. Kim, “Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells,” Molecular Cell, vol. 46, no. 6, pp. 893–895, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Monleau, S. Bonnel, T. Gostan et al., “Comparison of different extraction techniques to profile microRNAs from human sera and peripheral blood mononuclear cells,” BMC Genomics, vol. 15, article 395, 2014. View at Google Scholar
  127. G. S. Mack, “MicroRNA gets down to business,” Nature Biotechnology, vol. 25, no. 6, pp. 631–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. G. Manceau, S. Imbeaud, R. Thiebaut, F. Liebaert, and K. Fontaine, “Hsa-miR-31-3p expression is linked to progression-free survival in patients with KRAS wild-type metastatic colorectal cancer treated with anti-EGFR therapy,” Clinical Cancer Research, 2014. View at Google Scholar
  129. A. G. Seto, “The road toward microRNA therapeutics,” The International Journal of Biochemistry & Cell Biology, vol. 42, no. 8, pp. 1298–1305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. R. Garzon, G. Marcucci, and C. M. Croce, “Targeting microRNAs in cancer: rationale, strategies and challenges,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 775–789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. J. A. Broderick and P. D. Zamore, “MicroRNA therapeutics,” Gene Therapy, vol. 18, no. 12, pp. 1104–1110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. D. Nalls, S. N. Tang, M. Rodova, R. K. Srivastava, and S. Shankar, “Targeting epigenetic regulation of mir-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells,” PLoS ONE, vol. 6, no. 8, Article ID e24099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Saito and P. A. Jones, “Epigenetic activation of tumor suppressor microRNAs in human cancer cells,” Cell Cycle, vol. 5, no. 19, pp. 2220–2222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. J.-J. Zhao, J. Lin, H. Yang et al., “MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer,” The Journal of Biological Chemistry, vol. 283, no. 45, pp. 31079–31086, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. C. Rolfo, D. Fanale, D. S. Hong et al., “Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer,” Current Pharmaceutical Biotechnology, 2014. View at Publisher · View at Google Scholar
  136. D. R. Cochrane, N. S. Spoelstra, E. N. Howe, S. K. Nordeen, and J. K. Richer, “MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents,” Molecular Cancer Therapeutics, vol. 8, no. 5, pp. 1055–1066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. K. A. Lennox and M. A. Behlke, “Chemical modification and design of anti-miRNA oligonucleotides,” Gene Therapy, vol. 18, no. 12, pp. 1111–1120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Stenvang, A. N. Silahtaroglu, M. Lindow, J. Elmen, and S. Kauppinen, “The utility of LNA in microRNA-based cancer diagnostics and therapeutics,” Seminars in Cancer Biology, vol. 18, no. 2, pp. 89–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Obad, C. O. dos Santos, A. Petri et al., “Silencing of microRNA families by seed-targeting tiny LNAs,” Nature Genetics, vol. 43, no. 4, pp. 371–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Krützfeldt, N. Rajewsky, R. Braich et al., “Silencing of microRNAs in vivo with “antagomirs”,” Nature, vol. 438, no. 7068, pp. 685–689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. J. Elmén, M. Lindow, S. Schütz et al., “LNA-mediated microRNA silencing in non-human primates,” Nature, vol. 452, no. 7189, pp. 896–899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Lindow and S. Kauppinen, “Discovering the first microrna-targeted drug,” Journal of Cell Biology, vol. 199, no. 3, pp. 407–412, 2012. View at Publisher · View at Google Scholar · View at Scopus
  143. M. S. Ebert and P. A. Sharp, “MicroRNA sponges: progress and possibilities,” RNA, vol. 16, no. 11, pp. 2043–2050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. M. S. Ebert, J. R. Neilson, and P. A. Sharp, “MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells,” Nature Methods, vol. 4, no. 9, pp. 721–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. J. Kluiver, J. H. Gibcus, C. Hettinga et al., “Rapid generation of microRNA sponges for microRNA inhibition,” PLoS ONE, vol. 7, no. 1, Article ID e29275, 2012. View at Publisher · View at Google Scholar · View at Scopus
  146. Y. Tay, J. Rinn, and P. P. Pandolfi, “The multilayered complexity of ceRNA crosstalk and competition,” Nature, vol. 505, pp. 344–352, 2014. View at Google Scholar
  147. R. Denzler, V. Agarwal, J. Stefano, D. P. Bartel, and M. Stoffel, “Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance,” Molecular Cell, vol. 54, no. 5, pp. 766–776, 2014. View at Google Scholar
  148. D. Cazalla, T. Yario, and J. A. Steitz, “Down-regulation of a host MicroRNA by a Herpesvirus saimiri noncoding RNA,” Science, vol. 328, no. 5985, pp. 1563–1566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. D. D. Vo, C. Staedel, L. Zehnacker et al., “Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules,” ACS Chemical Biology, vol. 9, pp. 711–721, 2013. View at Google Scholar
  150. J. C. Henry, A. C. P. Azevedo-Pouly, and T. D. Schmittgen, “MicroRNA replacement therapy for cancer,” Pharmaceutical Research, vol. 28, no. 12, pp. 3030–3042, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. V. J. Craig, A. Tzankov, M. Flori, C. A. Schmid, A. G. BaDer, and A. Müller, “Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo,” Leukemia, vol. 26, no. 11, pp. 2421–2424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Agostini and R. A. Knight, “miR-34: from bench to bedside,” Oncotarget, vol. 5, pp. 872–881, 2014. View at Google Scholar
  153. A. G. Bader, “MiR-34—a microRNA replacement therapy is headed to the clinic,” Frontiers in Genetics, vol. 3, article 120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. Q. L. Hu, Q. Y. Jiang, X. Jin et al., “Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model,” Biomaterials, vol. 34, no. 9, pp. 2265–2276, 2013. View at Publisher · View at Google Scholar · View at Scopus
  155. J. D. Palmer, B. P. Soule, B. A. Simone, N. G. Zaorsky, L. Jin, and N. L. Simone, “MicroRNA expression altered by diet: can food be medicinal?” Ageing Research Reviews, 2014. View at Publisher · View at Google Scholar
  156. L. García-Segura, M. Pérez-Andrade, J. Miranda-Ríos, and C. Piso, “The emerging role of MicroRNAs in the regulation of gene expression by nutrients,” Journal of Nutrigenetics and Nutrigenomics, vol. 6, no. 1, pp. 16–31, 2013. View at Publisher · View at Google Scholar · View at Scopus
  157. C. C. Dahm, R. H. Keogh, E. A. Spencer et al., “Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries,” Journal of the National Cancer Institute, vol. 102, no. 9, pp. 614–626, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. S. Hu, T. S. Dong, S. R. Dalal et al., “The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon Cancer,” PLoS ONE, vol. 6, no. 1, Article ID e16221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. T. R. Cech and J. A. Steitz, “The noncoding RNA revolution-trashing old rules to forge new ones,” Cell, vol. 157, pp. 77–94, 2014. View at Google Scholar