Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 654712, 8 pages
Research Article

In Vitro Antiviral Activity of Circular Triple Helix Forming Oligonucleotide RNA towards Feline Infectious Peritonitis Virus Replication

1Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 28 October 2013; Revised 2 January 2014; Accepted 14 January 2014; Published 20 February 2014

Academic Editor: Abdurrahman Saydut

Copyright © 2014 Oi Kuan Choong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 1014 in the virus-inoculated cells to 109 in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection.