Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 681073, 15 pages
http://dx.doi.org/10.1155/2014/681073
Research Article

Biologic Propensities and Phytochemical Profile of Vangueria madagascariensis J. F. Gmelin (Rubiaceae): An Underutilized Native Medicinal Food Plant from Africa

Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius

Received 9 February 2014; Revised 19 February 2014; Accepted 5 March 2014; Published 10 April 2014

Academic Editor: José Carlos Tavares Carvalho

Copyright © 2014 Nelvana Ramalingum and M. Fawzi Mahomoodally. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Gurib-Fakim and T. Brendler, Medicinal and Aromatic Plants of Indian Ocean Islands: Madagascar, Comoros, Seychelles and Mascarenes, Medpharm, Stuttgart, Germany, 2004.
  2. T. Abeer, “Flavonoidal content of Vangueria infausta extract grown in Egypt: investigation of its antioxidant activity,” International Research Journal of Pharmacy, vol. 2, no. 3, pp. 157–161, 2011. View at Google Scholar
  3. H. J. de Boer, A. Kool, A. Broberg, W. R. Mziray, I. Hedberg, and J. J. Levenfors, “Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania,” Journal of Ethnopharmacology, vol. 96, no. 3, pp. 461–469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. S. Musa, F. E. Abdelrasool, E. A. Elsheikh, L. A. M. N. Ahmed, A. L. E. Mahmoud, and S. M. Yagi, “Ethnobotanical study of medicinal plants in the Blue Nile State, South-eastern Sudan,” Journal of Medicinal Plant Research, vol. 5, no. 17, pp. 4287–4297, 2011. View at Google Scholar · View at Scopus
  5. S. K. Jain and S. Srivastava, “Traditional uses of some Indian plants among islanders of Indian Ocean,” Indian Journal of Traditional Knowledge, vol. 4, no. 4, pp. 345–357, 2005. View at Google Scholar
  6. C. Orwa, A. Mutua, R. Kindt, R. Jamnadass, and S. Anthony, “Agroforestree Database: a tree reference and selection guide version 4.0,” 2009, http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp.
  7. M. I. Kotowaroo, M. F. Mahomoodally, A. Gurib-Fakim, and A. H. Subratty, “Screening of traditional antidiabetic medicinal plants of Mauritius for possible α-amylase inhibitory effects in vitro,” Phytotherapy Research, vol. 20, no. 3, pp. 228–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Amelia, G. N. Afnani, A. Musfiroh, A. N. Fikriyani, S. Ucche, and M. Murrukmihadi, “Extraction and stability test of anthocyanin from Buni fruits (Antidesma bunius L.) as an alternative natural and safe food colorants,” Journal of Food and Pharmaceutical Sciences, vol. 1, no. 2, pp. 49–53, 2013. View at Google Scholar
  9. R. Sangeetha and N. Vedasree, “In vitroα-amylase inhibitory activity of the leaves of Thespesia populnea,” ISRN Pharmacology, vol. 2012, Article ID 515634, 4 pages, 2012. View at Publisher · View at Google Scholar
  10. J. A. Bachhawat, M. S. Shihabudeen, and K. Thirumurugan, “Screening of fifteen Indian Ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 3, no. 4, pp. 267–274, 2011. View at Google Scholar · View at Scopus
  11. M. F. Mahomoodally, A. H. Subratty, A. Gurib-Fakim, I. M. Choudhary, and S. N. Khan, “Traditional medicinal herbs and food plants have the potential to inhibit key carbohydrate hydrolyzing enzymes in vitro and reduce postprandial blood glucose peaks in vivo,” The Scientific World Journal, vol. 2012, Article ID 285284, 9 pages, 2012. View at Publisher · View at Google Scholar
  12. R. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell, Harper's Illustrated Biochemistry, Lange Medical Books, New York, NY, USA, 26th edition, 2003.
  13. S. Gurudeeban, K. Satyavani, and T. Ramanathan, “Alpha glucosidase inhibitory effect and enzyme kinetics of coastal medicinal plants,” Bangladesh Journal of Pharmacology, vol. 7, pp. 186–191, 2012. View at Google Scholar
  14. A. M. Gallagher, P. R. Flatt, G. Duffy, and Y. H. A. Abdel-Wahab, “The effects of traditional antidiabetic plants on in vitro glucose diffusion,” Nutrition Research, vol. 23, no. 3, pp. 413–424, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. K. Kinoo, M. F. Mahomoodally, and D. Puchooa, “Anti-microbial and physico-chemical properties of processed and raw honeys of Mauritius,” Advances in Infectious Diseases, vol. 2, no. 2, pp. 25–36, 2012. View at Publisher · View at Google Scholar
  16. M. F. Mahomoodally, A. Gurib-Fakim, and A. H. Subratty, “Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius,” Pharmaceutical Biology, vol. 43, no. 3, pp. 237–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. M. Mariita, C. K. P. O. Ogol, N. O. Oguge, and P. O. Okemo, “Methanol extract of three medicinal plants from Samburu in northern Kenya show significant antimycobacterial, antibacterial and antifungal properties,” Research Journal of Medicinal Plant, vol. 5, no. 1, pp. 54–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. K. K. Parekh, A. M. Patel, A. J. Modi, and H. R. Chandrashekhar, “Antioxidant and cytotoxic activities of few selected Ipomoea species,” Pharmacologia, vol. 3, no. 9, pp. 377–386, 2012. View at Publisher · View at Google Scholar
  19. A. Rohman, S. Riyanto, N. Yuniarti, W. R. Saputra, R. Utami, and W. Mulatsih, “Antioxidant activity, total phenolic, and total flavaonoid of extracts and fractions of red fruit (Pandanus conoideus Lam.),” International Food Research Journal, vol. 17, no. 1, pp. 97–106, 2010. View at Google Scholar · View at Scopus
  20. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Wang, M. BassirI, R. Najafi et al., “Hypochlorous acid as a potential wound care agent,” Journal of Burns and Wounds, vol. 6, pp. 65–79, 2007. View at Google Scholar
  22. P. Thirunavukkarasu, T. Ramanathan, L. Ramkumar, R. Shanmugapriya, and G. Renugadevi, “The antioxidant and free radical scavenging effect of Avicennia officinalis,” Journal of Medicinal Plant Research, vol. 5, no. 19, pp. 4754–4758, 2011. View at Google Scholar · View at Scopus
  23. B. Hazra, S. Biswas, and N. Mandal, “Antioxidant and free radical scavenging activity of Spondias pinnata,” BMC Complementary & Alternative Medicine, vol. 8, article 63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Ramful, T. Bahorun, E. Bourdon, E. Tarnus, and O. I. Aruoma, “Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: potential prophylactic ingredients for functional foods application,” Toxicology, vol. 278, no. 1, pp. 75–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. O. U. Amaeze, G. A. Ayoola, M. O. Sofidiya, A. A. Adepoju-Bello, A. O. Adegoke, and H. A. B. Coker, “Evaluation of antioxidant activity of Tetracarpidium conophorum (Müll. Arg) Hutch & Dalziel leaves,” Oxidative Medicine and Cellular Longevity, vol. 2011, Article ID 976701, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. F. Mahomoodally, Biochemical investigation into the antidiabetic potential of medicinal plants in Mauritius [Ph.D. thesis], University of Mauritius, Moka, Mauritius, 2008.
  27. Y. Vaghasiya and S. Chanda, “Antimicrobial and free radical scavenging activity of different solvent extracts of Mangifera indica L. seeds,” Research Journal of Microbiology, vol. 5, no. 12, pp. 1207–1212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Pallant, SPSS Survival Manual: A Step by Step Guide to Data Analysis Using SPSS, Allen and Unwin, Sydney, Australia, 4th edition, 2011.
  29. K. Tawaha, F. Q. Alali, M. Gharaibeh, M. Mohammad, and T. el-Elimat, “Antioxidant activity and total phenolic content of selected Jordanian plant species,” Food Chemistry, vol. 104, no. 4, pp. 1372–1378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Rhabasa-Lhoret and J. L. Chiasson, “Alpha-glucosidase inhibition,” in International Textbook of Diabetes Mellitus, R. A. Defronzo, E. Ferrannini, H. Keen, and P. Zimmet, Eds., pp. 901–914, John Wiley & Sons, Chichester, UK, 2004. View at Google Scholar
  31. M. I. Kazeem, T. V. Dansu, and S. A. Adeola, “Inhibitory effect of Azadirachta indicia A. juss leaf extract on the activities of α-amylase and α-glucosidase,” Pakistani Journal of Biological Sciences, vol. 16, no. 21, pp. 1358–1362, 2013. View at Google Scholar
  32. K. B. Storey, Functional Metabolism: Regulation and Adaptation, John Wiley & Sons, Hoboken, NJ, USA, 2004.
  33. V. Ghadyale, S. Takalikar, V. Haldavnekar, and A. Arvindekar, “Effective control of postprandial glucose level through inhibition of intestinal alpha glucosidase by Cymbopogon martinii (Roxb.),” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 372909, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Adisakwattana, P. Jiphimai, P. Prutanopajai, B. Chanathong, S. Sapwarobol, and T. Ariyapitipan, “Evaluation of α-glucosidase, α-amylase and protein glycation inhibitory activities of edible plants,” International Journal of Food Sciences and Nutrition, vol. 61, no. 3, pp. 295–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. P. M. de Sales, P. M. de Souza, L. A. Simeoni, P. D. O. Magalhães, and D. Silveira, “α-amylase inhibitors: a review of raw material and isolated compounds from plant source,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 15, no. 1, pp. 141–183, 2012. View at Google Scholar · View at Scopus
  36. S. K. Basha and V. S. Kumari, “In vitro antidiabetic activity of Psidium guajava leaves extracts,” Asian Pacific Journal of Tropical Diseases, vol. 2, supplement 1, pp. S98–S100, 2012. View at Publisher · View at Google Scholar
  37. M. O. Weickert and A. F. H. Pfeiffer, “Metabolic effects of dietary fiber consumption and prevention of diabetes,” The Journal of Nutrition, vol. 138, no. 3, pp. 439–442, 2008. View at Google Scholar · View at Scopus
  38. P. J. Wood, M. U. Beer, and G. Butler, “Evaluation of role of concentration and molecular weight of oat β-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load,” British Journal of Nutrition, vol. 84, no. 1, pp. 19–23, 2000. View at Google Scholar · View at Scopus
  39. J. W. Anderson, W. R. Midgley, and B. Wedman, “Fiber and diabetes,” Diabetes Care, vol. 2, no. 4, pp. 369–379, 1979. View at Google Scholar · View at Scopus
  40. F. Ahmed, N. S. Siddaraju, and A. Urooj, “In vitro hypoglycemic effects of Gymnema sylvestre, Tinospora cordifolia, Eugenia jambolana and Aegle marmelos,” Journal of Natural Pharmaceuticals, vol. 2, no. 2, pp. 52–55, 2011. View at Google Scholar
  41. European Committee on Antimicrobial Susceptibility Testing (EUCAST), “Breakpoint tables for interpretation of MICs and zone diameters,” 2013, http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_3.1.pdf.
  42. C. Heilmann and F. Gotz, “Cell—cell communication and biofilm formation in Gram-positive bacteria,” in Bacterial Signaling, R. Krämer and K. Jung, Eds., chapter 1, pp. 7–22, Wiley-VCH, Weinheim, Germany, 2010. View at Google Scholar
  43. R. Sawhney and V. Berry, “Bacterial biofilm formation, pathogenicity, diagnostics and control: an overview,” Indian Journal of Medical Sciences, vol. 63, no. 7, pp. 313–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. M. Cowan, “Plant products as antimicrobial agents,” Clinical Microbiology Reviews, vol. 12, no. 4, pp. 564–582, 1999. View at Google Scholar · View at Scopus
  45. M. Matsuda and I. Shimomura, “Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer,” Obesity Research & Clinical Practice, vol. 7, no. 5, pp. e330–e341, 2013. View at Publisher · View at Google Scholar
  46. C. K. Roberts and K. K. Sindhu, “Oxidative stress and metabolic syndrome,” Life Sciences, vol. 84, no. 21-22, pp. 705–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Fu, B.-T. Xu, X.-R. Xu et al., “Antioxidant capacities and total phenolic contents of 62 fruits,” Food Chemistry, vol. 129, no. 2, pp. 345–350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Jakopič, R. Veberič, and F. Štampar, “Extraction of phenolic compounds from green walnut fruits in different solvents,” Acta Agriculturae Slovenica, vol. 93, no. 1, pp. 11–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. K. N. Prasad, L. Y. Chew, H. E. Khoo, K. W. Kong, A. Azlan, and A. Ismail, “Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum Miq. fruit,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 871379, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. K. N. Prasad, B. Yang, K. W. Wong et al., “Phytochemicals and antioxidant capacity from Nypa fruticans Wurmb. fruit,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 154606, 9 pages, 2013. View at Publisher · View at Google Scholar
  51. J. Gruz, F. A. Ayaz, H. Torun, and M. Strnad, “Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening,” Food Chemistry, vol. 124, no. 1, pp. 271–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Ribeiro, M. Freitas, S. M. Tomé, A. M. S. Silva, G. Porto, and E. Fernandes, “Modulation of human neutrophils’ oxidative burst by flavonoids,” European Journal of Medicinal Chemistry, vol. 67, pp. 280–292, 2013. View at Publisher · View at Google Scholar
  53. L. O. Regasini, J. C. R. Vellosa, D. H. S. Silva et al., “Flavonols from Pterogyne nitens and their evaluation as myeloperoxidase inhibitors,” Phytochemistry, vol. 69, no. 8, pp. 1739–1744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. J. Nijveldt, E. van Nood, D. E. C. van Hoorn, P. G. Boelens, K. van Norren, and P. A. M. van Leeuwen, “Flavonoids: a review of probable mechanisms of action and potential applications,” The American Journal of Clinical Nutrition, vol. 74, no. 4, pp. 418–425, 2001. View at Google Scholar · View at Scopus
  55. S. Mandal, B. Hazra, R. Sarkar, S. Biswas, and N. Mandal, “Assessment of the antioxidant and reactive oxygen species scavenging activity of methanolic extract of Caesalpinia crista leaf,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 173768, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Symonowicz and M. Kolanek, “Flavonoids and their properties to form chelate complexes,” Biotechnology Food Sciences, vol. 76, no. 1, pp. 35–41, 2012. View at Google Scholar