Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 684506, 11 pages
http://dx.doi.org/10.1155/2014/684506
Review Article

From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases

Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 21941-909 Rio de Janeiro, RJ, Brazil

Received 12 December 2013; Accepted 17 February 2014; Published 24 March 2014

Academic Editor: Noomen Hmidet

Copyright © 2014 Cristiane D. Anobom et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Sharma, Y. Chisti, and U. C. Banerjee, “Production, purification, characterization, and applications of lipases,” Biotechnology Advances, vol. 19, no. 8, pp. 627–662, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. P. Koskinen and A. M. Klibanov, Enzymatic Reactions in Organic Media, Blackie Academic and Professional Publisher, 1st edition, 1996.
  3. K. Jaeger and M. T. Reetz, “Microbial lipases form versatile tools for biotechnology,” Trends in Biotechnology, vol. 16, no. 9, pp. 396–403, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kapoor and M. N. Gupta, “Lipase promiscuity and its biochemical applications,” Process Biochemistry, vol. 47, no. 4, pp. 555–569, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Hasan, A. A. Shah, and A. Hameed, “Industrial applications of microbial lipases,” Enzyme and Microbial Technology, vol. 39, no. 2, pp. 235–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Horchani, I. Aissa, S. Ouertani, Z. Zarai, Y. Gargouri, and A. Sayari, “Staphylococcal lipases: biotechnological applications,” Journal of Molecular Catalysis B: Enzymatic, vol. 76, pp. 125–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Liu, X. Jiang, H. Mou, H. Guan, H. Hwang, and X. Li, “A novel low-temperature resistant alkaline lipase from a soda lake fungus strain Fusarium solani N4-2 for detergent formulation,” Biochemical Engineering Journal, vol. 46, no. 3, pp. 265–270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Grbavčić, D. Bezbradica, L. Izrael-Živković et al., “Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance,” Bioresource Technology, vol. 102, no. 24, pp. 11226–11233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. R. Rosa, I. C. S. Duarte, N. K. Saavedra et al., “Performance and molecular evaluation of an anaerobic system with suspended biomass for treating wastewater with high fat content after enzymatic hydrolysis,” Bioresource Technology, vol. 100, no. 24, pp. 6170–6176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Cammarota and D. M. G. Freire, “A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content,” Bioresource Technology, vol. 97, no. 17, pp. 2195–2210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. B. G. Valladão, M. C. Cammarota, and D. M. G. Freire, “Performance of an anaerobic reactor treating poultry abattoir wastewater with high fat content after enzymatic hydrolysis,” Environmental Engineering Science, vol. 28, no. 4, pp. 299–307, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Sellami, H. Ghamgui, F. Frikha, Y. Gargouri, and N. Miled, “Enzymatic transesterification of palm stearin and olein blends to produce zero-trans margarine fat,” BMC Biotechnology, vol. 12, article 48, 8 pages, 2012. View at Google Scholar
  13. R. Fernandez-Lafuente, “Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst,” Journal of Molecular Catalysis B: Enzymatic, vol. 62, no. 3-4, pp. 197–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. C. O. Machado, A. A. T. da Silva, C. P. Borges, A. B. C. Simas, and D. M. G. Freire, “Kinetic resolution of (R,S)-1,2-isopropylidene glycerol (solketal) ester derivatives by lipases,” Journal of Molecular Catalysis B: Enzymatic, vol. 69, no. 1-2, pp. 42–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. A. Manoel, K. C. Pais, M. C. Flores et al., “Kinetic resolution of a precursor for myo-inositol phosphates under continuous flow conditions,” Journal of Molecular Catalysis B: Enzymatic, vol. 87, pp. 139–143, 2013. View at Google Scholar
  16. K. Jaeger and T. Eggert, “Lipases for biotechnology,” Current Opinion in Biotechnology, vol. 13, no. 4, pp. 390–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. A. G. Cunha, A. A. T. da Silva, A. J. R. da Silva et al., “Efficient kinetic resolution of (±)-1,2-O-isopropylidene-3,6-di-O-benzyl-myo-inositol with the lipase B of Candida antarctica,” Tetrahedron Asymmetry, vol. 21, no. 24, pp. 2899–2903, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. E. A. Manoel, K. C. Pais, A. G. Cunha, M. A. Z. Coelho, D. M. G. Freire, and A. B. C. Simas, “On the kinetic resolution of sterically hindered myo-inositol derivatives in organic media by lipases,” Tetrahedron Asymmetry, vol. 23, no. 1, pp. 47–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. A. A. Mendes, P. C. Oliveira, and H. F. de Castro, “Properties and biotechnological applications of porcine pancreatic lipase,” Journal of Molecular Catalysis B: Enzymatic, vol. 78, pp. 119–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. R. C. Rodrigues and R. Fernandez-Lafuente, “Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process,” Journal of Molecular Catalysis B: Enzymatic, vol. 64, no. 1-2, pp. 1–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. M. da Silva, V. C. Medeiros, M. A. P. Langone, and D. M. G. Freire, “Synthesis of monocaprin catalyzed by lipase,” Applied Biochemistry and Biotechnology A: Enzyme Engineering and Biotechnology, vol. 105–108, no. 1–3, pp. 757–768, 2003. View at Google Scholar · View at Scopus
  22. I. Aissa, R. Sghair, M. Bouaziz, D. Laouini, S. Sayadi, and Y. Gargouri, “Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities,” Lipids in Health and Disease, vol. 11, article 13, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Gog, M. Roman, M. Toşa, C. Paizs, and F. D. Irimie, “Biodiesel production using enzymatic transesterification: current state and perspectives,” Renewable Energy, vol. 39, no. 1, pp. 10–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. J. S. de Sousa, E. D. Cavalcanti-Oliveira, D. A. G. Aranda, and D. M. G. Freire, “Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production,” Journal of Molecular Catalysis B: Enzymatic, vol. 65, no. 1–4, pp. 133–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Robles-Medina, P. A. González-Moreno, L. Esteban-Cerdán, and E. Molina-Grima, “Biocatalysis: towards ever greener biodiesel production,” Biotechnology Advances, vol. 27, no. 4, pp. 398–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Fjerbaek, K. V. Christensen, and B. Norddahl, “A review of the current state of biodiesel production using enzymatic transesterification,” Biotechnology and Bioengineering, vol. 102, no. 5, pp. 1298–1315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Shimada, Y. Watanabe, T. Samukawa et al., “Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase,” Journal of the American Oil Chemists' Society, vol. 76, no. 7, pp. 789–793, 1999. View at Google Scholar · View at Scopus
  28. K. Ban, M. Kaieda, T. Matsumoto, A. Kondo, and H. Fukuda, “Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles,” Biochemical Engineering Journal, vol. 8, no. 1, pp. 39–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. Ö. Köse, M. Tüter, and H. A. Aksoy, “Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium,” Bioresource Technology, vol. 83, no. 2, pp. 125–129, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. I. N. S. Corrêa, S. L. Souza, M. Catran et al., “Enzymatic biodiesel synthesis using a byproduct obtained from palm oil refining,” Enzyme Research, vol. 2011, Article ID 814507, 8 pages, 2011. View at Publisher · View at Google Scholar
  31. J. A. da Silva, D. M. G. Freire, A. Habert, and V. Soares, “Process for the production of bio-lubricant from methyl biodiesel and bio-lubricant obtained by said process,” EP 2657324 A1, 2013. View at Google Scholar
  32. E. C. G. Aguieiras, C. O. Veloso, J. V. Bevilaqua et al., “Estolides synthesis catalyzed by immobilized lipases,” Enzyme Research, vol. 2011, Article ID 432746, 7 pages, 2011. View at Publisher · View at Google Scholar
  33. J. Kadokawa and S. Kobayashi, “Polymer synthesis by enzymatic catalysis,” Current Opinion in Chemical Biology, vol. 14, no. 2, pp. 145–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Uyama and S. Kobayashi, “Enzymatic ring-opening polymerization of lactones catalyzed by lipase,” Chemistry Letters, vol. 22, pp. 11497–11150, 1993. View at Google Scholar
  35. A. Mahapatro, A. Kumar, and R. A. Gross, “Mild, solvent-free ω-hydroxy acid polycondensations catalyzed by Candida antarctica lipase B,” Biomacromolecules, vol. 5, no. 1, pp. 62–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Bódalo, J. Bastida, M. F. Máximo, M. C. Montiel, M. Gómez, and M. D. Murcia, “Production of ricinoleic acid estolide with free and immobilized lipase from Candida rugosa,” Biochemical Engineering Journal, vol. 39, no. 3, pp. 450–456, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Nardini and B. W. Dijkstra, “α/β hydrolase fold enzymes: the family keeps growing,” Current Opinion in Structural Biology, vol. 9, no. 6, pp. 732–737, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. J. D. Schrag and M. Cygler, “Lipases and α/β hydrolase fold,” Methods in Enzymology, vol. 284, pp. 85–107, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. K.-E. Jaeger, B. W. Dijkstra, and M. T. Reetz, “Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases,” Annual Review of Microbiology, vol. 53, pp. 315–351, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. U. T. Bornscheuer, “Microbial carboxyl esterases: classification, properties and application in biocatalysis,” FEMS Microbiology Reviews, vol. 26, no. 1, pp. 73–81, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Bordes, S. Barbe, P. Escalier et al., “Exploring the conformational states and rearrangements of Yarrowia lipolytica lipase,” Biophysical Journal, vol. 99, no. 7, pp. 2225–2234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. D. L. Ollis, E. Cheah, M. Cygler et al., “The α/β hydrolase fold,” Protein Engineering, vol. 5, no. 3, pp. 197–211, 1992. View at Google Scholar · View at Scopus
  43. P. Heikinheimo, A. Goldman, C. Jeffries, and D. L. Ollis, “Of barn owls and bankers: a lush variety of α/β hydrolases,” Structure, vol. 7, no. 6, pp. R141–R146, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Gupta, N. Gupta, and P. Rathi, “Bacterial lipases: an overview of production, purification and biochemical properties,” Applied Microbiology and Biotechnology, vol. 64, no. 6, pp. 763–781, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. T. N. Petersen, P. Fojan, and S. B. Petersen, “How do lipases and esterases work: the electrostatic contribution,” Journal of Biotechnology, vol. 85, no. 2, pp. 115–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Ranaldi, V. Belle, M. Woudstra et al., “Amplitude of pancreatic lipase lid opening in solution and identification of spin label conformational subensembles by combining continuous wave and pulsed EPR spectroscopy and molecular dynamics,” Biochemistry, vol. 49, no. 10, pp. 2140–2149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Rehm, P. Trodler, and J. Pleiss, “Solvent-induced lid opening in lipases: a molecular dynamics study,” Protein Science, vol. 19, no. 11, pp. 2122–2130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Sarda and P. Desnuelle, “Action de la lipase pancréatique sur les esters en émulsion,” Biochimica et Biophysica Acta, vol. 30, no. 3, pp. 513–521, 1958. View at Google Scholar · View at Scopus
  49. K. Henzler-Wildman and D. Kern, “Dynamic personalities of proteins,” Nature, vol. 450, no. 7172, pp. 964–972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Brady, A. M. Brzozowski, Z. S. Derewenda et al., “A serine protease triad forms the catalytic centre of a triacylglycerol lipase,” Nature, vol. 343, no. 6260, pp. 767–770, 1990. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. S. Derewenda, U. Derewenda, and G. G. Dodson, “The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution,” Journal of Molecular Biology, vol. 227, no. 3, pp. 818–839, 1992. View at Publisher · View at Google Scholar · View at Scopus
  52. J. D. Schrag, Y. Li, S. Wu, and M. Cygler, “Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum,” Nature, vol. 351, no. 6329, pp. 761–764, 1991. View at Google Scholar · View at Scopus
  53. M. E. M. Noble, A. Cleasby, L. N. Johnson, M. R. Egmondb, and L. G. J. Frenkenb, “The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate,” Annual Reviews in Microbiology, vol. 53, pp. 315–351, 1999. View at Google Scholar
  54. K. Kuwahara, C. Angkawidjaja, H. Matsumura, Y. Koga, K. Takano, and S. Kanaya, “Importance of the Ca2+-binding sites in the N-catalytic domain of a family I.3 lipase for activity and stability,” Protein Engineering, Design and Selection, vol. 21, no. 12, pp. 737–744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Grochulski, Y. Li, J. D. Schrag et al., “Insights into interfacial activation from an open structure of Candida rugosa lipase,” The Journal of Biological Chemistry, vol. 268, no. 17, pp. 12843–12847, 1993. View at Google Scholar · View at Scopus
  56. P. Grochulski, Y. Li, J. D. Schrag, and M. Cygler, “Two conformational states of Candida rugosa lipase,” Protein Science, vol. 3, no. 1, pp. 82–91, 1994. View at Google Scholar · View at Scopus
  57. J. Uppenberg, M. T. Hansen, S. Patkar, and T. A. Jones, “The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica,” Structure, vol. 2, no. 4, pp. 293–308, 1994. View at Google Scholar · View at Scopus
  58. D. J. Ericsson, A. Kasrayan, P. Johansson et al., “X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation,” Journal of Molecular Biology, vol. 376, no. 1, pp. 109–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Trodler and J. Pleiss, “Modeling structure and flexibility of Candida antarctica lipase B in organic solvents,” BMC Structural Biology, vol. 8, article 9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. G. H. Peters, D. M. F. van Aalten, A. Svendsen, and R. P. Bywater, “Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length,” Biophysical Journal, vol. 74, pp. 1251–1262, 1998. View at Google Scholar
  61. G. H. Peters and R. P. Bywater, “Influence of a lipid interface on protein dynamics in a fungal lipase,” Biophysical Journal, vol. 81, no. 6, pp. 3052–3065, 2001. View at Google Scholar · View at Scopus
  62. M. Nardini, D. A. Lang, K. Liebeton, K. Jaeger, and B. W. Dijkstra, “Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases,” The Journal of Biological Chemistry, vol. 275, no. 40, pp. 31219–31225, 2000. View at Google Scholar · View at Scopus
  63. G. van Pouderoyen, T. Eggert, K. Jaeger, and B. W. Dijkstra, “The crystal structure of Bacillus subtilis lipase: a minimal α/β hydrolase fold enzyme,” Journal of Molecular Biology, vol. 309, no. 1, pp. 215–226, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. J. D. A. Tyndall, S. Sinchaikul, L. A. Fothergill-Gilmore, P. Taylor, and M. D. Walkinshaw, “Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1,” Journal of Molecular Biology, vol. 323, no. 5, pp. 859–869, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Cheng, C. Angkawidjaja, Y. Koga, and S. Kanaya, “Requirement of lid2 for interfacial activation of a family I. 3 lipase with unique two lid structures,” FEBS Journal, vol. 279, pp. 3727–3737, 2012. View at Google Scholar
  66. C. Angkawidjaja, H. Matsumura, Y. Koga, K. Takano, and S. Kanaya, “X-ray crystallographic and MD simulation studies on the mechanism of interfacial activation of a family I.3 lipase with two lids,” Journal of Molecular Biology, vol. 400, no. 1, pp. 82–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Z. A. Rahman, A. B. Salleh, R. N. Z. R. A. Rahman, M. B. A. Rahman, M. Basri, and T. C. Leow, “Unlocking the mystery behind the activation phenomenon of T1 lipase: a molecular dynamics simulations approach,” Protein Science, vol. 21, pp. 1210–1221, 2012. View at Google Scholar
  68. M. S. M. Ali, S. F. M. Fuzi, M. Ganasen, R. N. Z. R. A. Rahman, M. Basri, and A. B. Salleh, “Structural adaptation of cold-active RTX lipase from Pseudomonas sp. strain AMS8 revealed via homology and molecular dynamics simulation approaches,” BioMed Research International, vol. 2013, Article ID 925373, 9 pages, 2013. View at Publisher · View at Google Scholar
  69. S. Lutz, “Beyond directed evolution-semi-rational protein engineering and design,” Current Opinion in Biotechnology, vol. 21, no. 6, pp. 734–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, and K. Robins, “Engineering the third wave of biocatalysis,” Nature, vol. 485, pp. 185–194, 2012. View at Google Scholar
  71. S. G. Burton, D. A. Cowan, and J. M. Woodley, “The search for the ideal biocatalyst,” Nature Biotechnology, vol. 20, no. 1, pp. 37–45, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Luetz, L. Giver, and J. Lalonde, “Engineered enzymes for chemical production,” Biotechnology and Bioengineering, vol. 101, no. 4, pp. 647–653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. N. J. Turner, “Directed evolution drives the next generation of biocatalysts,” Nature Chemical Biology, vol. 5, no. 8, pp. 567–573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Engström, J. Nyhlén, A. G. Sandström, and J.-E. Baäckvall, “Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters,” Journal of the American Chemical Society, vol. 132, pp. 7038–7042, 2010. View at Google Scholar
  75. F. Bordes, L. Tarquis, J. Nicaud, and A. Marty, “Isolation of a thermostable variant of Lip2 lipase from Yarrowia lipolytica by directed evolution and deeper insight into the denaturation mechanisms involved,” Journal of Biotechnology, vol. 156, no. 2, pp. 117–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. W. P. C. Stemmer, “DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 22, pp. 10747–10751, 1994. View at Publisher · View at Google Scholar · View at Scopus
  77. X. Yu, R. Wang, M. Zhang, Y. Xu, and R. Xiao, “Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris,” Microbial Cell Factories, vol. 11, pp. 102–113, 2012. View at Google Scholar
  78. N. Akbulut, M. T. Öztürk, T. Pijning, S. I. Öztürk, and F. Gümüsel, “Improved activity and thermostability of Bacillus pumilus lipase by directed evolution,” Journal of Biotechnology, vol. 164, pp. 123–129, 2013. View at Google Scholar
  79. A. S. Bommarius and M. F. Paye, “Stabilizing biocatalysts,” Chemical Society Reviews, vol. 42, no. 15, pp. 6534–6565, 2013. View at Google Scholar
  80. K. L. Morley and R. J. Kazlauskas, “Improving enzyme properties: when are closer mutations better?” Trends in Biotechnology, vol. 23, no. 5, pp. 231–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Park, K. L. Morley, G. P. Horsman, M. Holmquist, K. Hult, and R. J. Kazlauskas, “Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations,” Chemistry and Biology, vol. 12, no. 1, pp. 45–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Park and J. Cochran, Protein Engineering and Design, CRC Press, 2009.
  83. D. Böttcher and U. T. Bornscheuer, “Protein engineering of microbial enzymes,” Current Opinion in Microbiology, vol. 13, no. 3, pp. 274–282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. G. A. Strohmeier, H. Pichler, O. May, and M. Gruber-Khadjawi, “Application of designed enzymes in organic synthesis,” Chemical Reviews, vol. 111, no. 7, pp. 4141–4164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Lutz and W. M. Patrick, “Novel methods for directed evolution of enzymes: quality, not quantity,” Current Opinion in Biotechnology, vol. 15, no. 4, pp. 291–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. M. T. Neves-Petersen, E. I. Petersen, P. Fojan, M. Noronha, R. G. Madsen, and S. B. Petersen, “Engineering the pH-optimum of a triglyceride lipase: from predictions based on electrostatic computations to experimental results,” Journal of Biotechnology, vol. 87, no. 3, pp. 225–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Qian, C. J. Fields, and S. Lutz, “Investigating the structural and functional consequences of circular permutation on lipase B from Candida antarctica,” ChemBioChem, vol. 8, no. 16, pp. 1989–1996, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. Han, S. Han, S. Zheng, and Y. Lin, “Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface,” Applied Microbiology and Biotechnology, vol. 85, no. 1, pp. 117–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. M. T. Reetz, S. Prasad, J. D. Carballeira, Y. Gumulya, and M. Bocola, “Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods,” Journal of the American Chemical Society, vol. 132, no. 26, pp. 9144–9152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Liebeton, A. Zonta, K. Schimossek et al., “Directed evolution of an enantioselective lipase,” Chemistry and Biology, vol. 7, no. 9, pp. 709–718, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Zhang, W. Suen, W. Windsor, L. Xiao, V. Madison, and A. Zaks, “Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution,” Protein Engineering, vol. 16, no. 8, pp. 599–605, 2003. View at Google Scholar · View at Scopus
  92. N. Sibille, A. Favier, A. I. Azuaga et al., “Comparative NMR study on the impact of point mutations on protein stability of Pseudomonas mendocina lipase,” Protein Science, vol. 15, no. 8, pp. 1915–1927, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Z. Kamal, S. Ahmad, T. R. Molugu et al., “In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation,” Journal of Molecular Biology, vol. 413, no. 3, pp. 726–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Ruslan, R. N. Z. R. A. Rahman, T. C. Leow, M. S. M. Ali, M. Basri, and A. B. Salleh, “Improvement of thermal stability via outer-loop ion pair interaction of mutated T1 lipase from Geobacillus zalihae strain T1,” International Journal of Molecular Sciences, vol. 13, no. 1, pp. 943–960, 2012. View at Publisher · View at Google Scholar · View at Scopus