Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 693157, 10 pages
http://dx.doi.org/10.1155/2014/693157
Review Article

The Possible Role of Extravillous Trophoblast-Derived Exosomes on the Uterine Spiral Arterial Remodeling under Both Normal and Pathological Conditions

UQ Centre for Clinical Research, Centre for Clinical Diagnostics, Royal Brisbane and Women’s Hospital, Herston, Brisbane, QLD 4029, Australia

Received 27 March 2014; Revised 28 May 2014; Accepted 1 July 2014; Published 14 September 2014

Academic Editor: Luis Sobrevia

Copyright © 2014 Carlos Salomon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Lappas and G. E. Rice, “Transcriptional regulation of the processes of human labour and delivery,” Placenta, vol. 30, pp. S90–S95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. M. Gude, C. T. Roberts, B. Kalionis, and R. G. King, “Growth and function of the normal human placenta,” Thrombosis Research, vol. 114, no. 5-6, pp. 397–407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. E. P. Y. Kam, L. Gardner, Y. W. Loke, and A. King, “The role of trophoblast in the physiological change in decidual spiral arteries,” Human Reproduction, vol. 14, no. 8, pp. 2131–2138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Pijnenborg, E. Ball, J. N. Bulmer, M. Hanssens, S. C. Robson, and L. Vercruysse, “In vivo analysis of trophoblast cell invasion in the human,” Methods in molecular medicine., vol. 122, pp. 11–44, 2006. View at Google Scholar · View at Scopus
  5. R. Pijnenborg, J. M. Bland, W. B. Robertson, and I. Brosens, “Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy,” Placenta, vol. 4, no. 4, pp. 397–413, 1983. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Blackburn, J. A. Keelan, R. S. Taylor, and R. A. North, “Maternal serum activin A is not elevated before preeclampsia in women who are at high risk,” American Journal of Obstetrics and Gynecology, vol. 188, no. 3, pp. 807–811, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 35, supplement 1, pp. S64–S71, 2012. View at Publisher · View at Google Scholar
  8. J. D. Boyd and W. J. Hamilton, The Human Placenta, W. Heffer & Sons, Cambridge, UK, 1970.
  9. R. J. Simpson, S. S. Jensen, and J. W. E. Lim, “Proteomic profiling of exosomes: current perspectives,” Proteomics, vol. 8, no. 19, pp. 4083–4099, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. Simpson, J. W. E. Lim, R. L. Moritz, and S. Mathivanan, “Exosomes: proteomic insights and diagnostic potential,” Expert Review of Proteomics, vol. 6, no. 3, pp. 267–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Kalra, C. G. Adda, M. Liem et al., “Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma,” Proteomics, vol. 13, no. 22, pp. 3354–3364, 2013. View at Google Scholar
  12. C. V. Harding, J. E. Heuser, and P. D. Stahl, “Exosomes: looking back three decades and into the future,” Journal of Cell Biology, vol. 200, no. 4, pp. 367–371, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Lyall, “Priming and remodelling of human placental bed spiral arteries during pregnancy: a Review,” Placenta, vol. 26, pp. S31–S36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. J. Burton, A. W. Woods, E. Jauniaux, and J. C. P. Kingdom, “Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy,” Placenta, vol. 30, no. 6, pp. 473–482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Benirschke and P. Kaufmann, Pathology of the Human Placenta, 2000.
  16. G. S. J. Whitley and J. E. Cartwright, “Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field,” Placenta, vol. 31, no. 6, pp. 465–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Pijnenborg, L. Vercruysse, and M. Hanssens, “The uterine spiral arteries in human pregnancy: facts and controversies,” Placenta, vol. 27, no. 9-10, pp. 939–958, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Pijnenborg, J. M. Bland, W. B. Robertson, G. Dixon, and I. Brosens, “The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy,” Placenta, vol. 2, no. 4, pp. 303–316, 1981. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Pijnenborg, G. Dixon, W. B. Robertson, and I. Brosens, “Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy,” Placenta, vol. 1, no. 1, pp. 3–19, 1980. View at Publisher · View at Google Scholar · View at Scopus
  20. G. J. Burton, E. Jauniaux, and A. L. Watson, “Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited,” The American Journal of Obstetrics and Gynecology, vol. 181, no. 3, pp. 718–724, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. J. N. Bulmer, B. A. Innes, J. Levey, S. C. Robson, and G. E. Lash, “The role of vascular smooth muscle cell apoptosis and migration during uterine spiral artery remodeling in normal human pregnancy,” The FASEB Journal, vol. 26, no. 7, pp. 2975–2985, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. G. J. Burton, E. Jauniaux, and D. S. Charnock-Jones, “The influence of the intrauterine environment on human placental development,” International Journal of Developmental Biology, vol. 54, no. 2-3, pp. 303–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Rodesch, P. Simon, C. Donner, and E. Jauniaux, “Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy,” Obstetrics and Gynecology, vol. 80, no. 2, pp. 283–285, 1992. View at Google Scholar · View at Scopus
  24. E. Jauniaux, B. Gulbis, and G. J. Burton, “Physiological implications of the materno-fetal oxygen gradient in human early pregnancy,” Reproductive BioMedicine Online, vol. 7, no. 2, pp. 250–253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Lyall, “Mechanisms regulating cytotrophoblast invasion in normal pregnancy and pre-eclampsia,” Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 46, no. 4, pp. 266–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Wang and S. Zhao, Vascular Biology of the Placenta, Morgan & Claypool Life Sciences, San Rafael, Calif, USA, 2010.
  27. A. M. Borzychowski, I. L. Sargent, and C. W. G. Redman, “Inflammation and pre-eclampsia,” Seminars in Fetal and Neonatal Medicine, vol. 11, no. 5, pp. 309–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. W. G. Redman and I. L. Sargent, “Preeclampsia and the systemic inflammatory response,” Seminars in Nephrology, vol. 24, no. 6, pp. 565–570, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. B. D. LaMarca, M. J. Ryan, J. S. Gilbert, S. R. Murphy, and J. P. Granger, “Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia,” Current Hypertension Reports, vol. 9, no. 6, pp. 480–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Raghupathy, “Cytokines as key players in the pathophysiology of preeclampsia,” Medical Principles and Practice, vol. 22, supplement 1, pp. 8–19, 2013. View at Publisher · View at Google Scholar
  31. H.-L. Chen, Y. Yang, X. L. Hu, K. K. Yelavarthi, J. L. Fishback, and J. S. Hunt, “Tumor necrosis factor alpha mRNA and protein are present in human placental and uterine cells at early and late stages of gestation,” The American Journal of Pathology, vol. 139, no. 2, pp. 327–335, 1991. View at Google Scholar · View at Scopus
  32. G. Vince, S. Shorter, P. Starkey et al., “Localization of tumour necrosis factor production in cells at the materno/fetal interface in human pregnancy,” Clinical and Experimental Immunology, vol. 88, no. 1, pp. 174–180, 1992. View at Google Scholar · View at Scopus
  33. M.-M. Philippeaux and P. F. Piguet, “Expression of tumor necrosis factor-α and its mRNA in the endometrial mucosa during the menstrual cycle,” The American Journal of Pathology, vol. 143, no. 2, pp. 480–486, 1993. View at Google Scholar · View at Scopus
  34. P. P. Jokhi, A. King, A. M. Sharkey, S. K. Smith, and Y. W. Loke, “Screening for cytokine messenger ribonucleic acids in purified human decidual lymphocyte populations by the reverse-transcriptase polymerase chain reaction,” Journal of Immunology, vol. 153, no. 10, pp. 4427–4435, 1994. View at Google Scholar · View at Scopus
  35. S. Bauer, J. Pollheimer, J. Hartmann, P. Husslein, J. D. Aplin, and M. Knöfler, “Tumor necrosis factor-α inhibits trophoblast migration through elevation of plasminogen activator inhibitor-1 in first-trimester villous explant cultures,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 2, pp. 812–822, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Goetze, X.-P. Xi, Y. Kawano et al., “TNF-α-induced migration of vascular smooth muscle cells is MAPK dependent,” Hypertension, vol. 33, no. 1, part 2, pp. 183–189, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Laham, S. P. Brennecke, K. Bendtzen, and G. E. Rice, “Tumour necrosis factor α during human pregnancy and labour: maternal plasma and amniotic fluid concentrations and release from intrauterine tissues,” European Journal of Endocrinology, vol. 131, no. 6, pp. 607–614, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Laham, F. Van Dunné, L. J. Abraham et al., “Tumor necrosis factor-β in human pregnancy and labor,” Journal of Reproductive Immunology, vol. 33, no. 1, pp. 53–69, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. M. T. Coughlan, K. Oliva, H. M. Georgiou, J. M. H. Permezel, and G. E. Rice, “Glucose-induced release of tumour necrosis factor-alpha from human placental and adipose tissues in gestational diabetes mellitus,” Diabetic Medicine, vol. 18, no. 11, pp. 921–927, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Haider and M. Knöfler, “Human tumour necrosis factor: physiological and pathological roles in placenta and endometrium,” Placenta, vol. 30, no. 2, pp. 111–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Pijnenborg, P. J. McLaughlin, L. Vercruysse et al., “Immunolocalization of tumour necrosis factor-α (TNF-α) in the placental bed of normotensive and hypertensive human pregnancies,” Placenta, vol. 19, no. 4, pp. 231–239, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Knöfler, B. Mösl, S. Bauer, G. Griesinger, and P. Husslein, “TNF -α/TNFRI in primary and immortalized first trimester cytotrophoblasts,” Placenta, vol. 21, no. 5-6, pp. 525–535, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Rusterholz, S. Hahn, and W. Holzgreve, “Role of placentally produced inflammatory and regulatory cytokines in pregnancy and the etiology of preeclampsia,” Seminars in Immunopathology, vol. 29, no. 2, pp. 151–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Williams, A. Farrand, R. Mittendorf et al., “Maternal second trimester serum tumor necrosis factor-α-soluble receptor p55 (sTNFp55) and subsequent risk of preeclampsia,” American Journal of Epidemiology, vol. 149, no. 4, pp. 323–329, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Xie, Y. Hu, S. E. Turvey et al., “Toll-like receptors 2 and 4 and the cryopyrin inflammasome in normal pregnancy and pre-eclampsia,” BJOG, vol. 117, no. 1, pp. 99–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Xie, S. E. Turvey, M. A. Williams, G. Mor, and P. von Dadelszen, “Toll-like receptor signaling and pre-eclampsia,” The American Journal of Reproductive Immunology, vol. 63, no. 1, pp. 7–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Hamai, T. Fujii, T. Yamashita et al., “Evidence for an elevation in serum interleukin-2 and tumor necrosis factor-α levels before the clinical manifestations of preeclampsia,” American Journal of Reproductive Immunology, vol. 38, no. 2, pp. 89–93, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Kalantar, S. Rajaei, A. B. Heidari et al., “Serum levels of tumor necrosis factor-alpha, interleukin-15 and interleukin-10 in patients with pre-eclampsia in comparison with normotensive pregnant women,” Iranian Journal of Nursing and Midwifery Research, vol. 18, no. 6, pp. 463–466, 2013. View at Google Scholar
  49. S. Y. Lau, S.-J. Guild, C. J. Barrett et al., “Tumor necrosis factor-alpha, interleukin-6, and interleukin-10 levels are altered in preeclampsia: a systematic review and meta-analysis,” The American Journal of Reproductive Immunology, vol. 70, no. 5, pp. 412–427, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Xie, M. Z. Yao, J. B. Liu, and L. K. Xiong, “A meta-analysis of tumor necrosis factor-alpha, interleukin-6, and interleukin-10 in preeclampsia,” Cytokine, vol. 56, no. 3, pp. 550–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. H. G. Zhang, C. Liu, K. Su et al., “A membrane form of TNF-alpha presented by exosomes delays T cell activation-induced cell death,” Journal of Immunology, vol. 176, no. 12, pp. 7385–7393, 2006. View at Google Scholar
  52. Y. Chen, W. Ge, L. Xu et al., “miR-200b is involved in intestinal fibrosis of Crohn's disease,” International Journal of Molecular Medicine, vol. 29, no. 4, pp. 601–606, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Atay, C. Gercel-Taylor, M. Kesimer, and D. D. Taylor, “Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells,” Experimental Cell Research, vol. 317, no. 8, pp. 1192–1202, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Atay, C. Gercel-Taylor, J. Suttles, G. Mor, and D. D. Taylor, “Trophoblast-derived exosomes mediate monocyte recruitment and differentiation,” American Journal of Reproductive Immunology, vol. 65, no. 1, pp. 65–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Armitage, L. Poston, and P. Taylor, “Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity,” Frontiers of Hormone Research, vol. 36, pp. 73–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. D. D. Taylor and C. Gerçel-Taylor, “Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects,” British Journal of Cancer, vol. 92, no. 2, pp. 305–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Théry, “Exosomes: secreted vesicles and intercellular communications,” F1000 Biology Reports, vol. 3, no. 1, article 15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Salomon, J. Ryan, L. Sobrevia et al., “Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis,” PLoS ONE, vol. 8, no. 7, Article ID e68451, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. A. V. Vlassov, S. Magdaleno, R. Setterquist, and R. Conrad, “Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials,” Biochimica et Biophysica Acta: General Subjects, vol. 1820, no. 7, pp. 940–948, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Simons and G. Raposo, “Exosomes—vesicular carriers for intercellular communication,” Current Opinion in Cell Biology, vol. 21, no. 4, pp. 575–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Lässer, V. S. Alikhani, K. Ekström et al., “Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages,” Journal of Translational Medicine, vol. 9, article 9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Keller, J. Ridinger, A.-K. Rupp, J. W. G. Janssen, and P. Altevogt, “Body fluid derived exosomes as a novel template for clinical diagnostics,” Journal of Translational Medicine, vol. 9, article 86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Ostrowski, N. B. Carmo, S. Krumeich et al., “Rab27a and Rab27b control different steps of the exosome secretion pathway,” Nature Cell Biology, vol. 12, no. 1, pp. 19–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Salomon, M. J. Torres, M. Kobayashi et al., “A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration,” PLoS ONE, vol. 9, no. 6, Article ID e98667, 2014. View at Publisher · View at Google Scholar
  65. C. Salomon, M. Kobayashi, K. Ashman, L. Sobrevia, M. D. Mitchell, and G. E. Rice, “Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes,” PLoS ONE, vol. 8, no. 11, Article ID e79636, 2013. View at Publisher · View at Google Scholar
  66. D. M. Pegtel, K. Cosmopoulos, D. A. Thorley-Lawson et al., “Functional delivery of viral miRNAs via exosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6328–6333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. K. J. Svensson, H. C. Christianson, A. Wittrup et al., “Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1,” The Journal of Biological Chemistry, vol. 288, no. 24, pp. 17713–17724, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Kobayashi, “Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200,” Journal of Translational Medicine, vol. 12, article 4, 2014. View at Publisher · View at Google Scholar
  69. H. Valadi, “Exosomes contain a selective number of mRNA and microRNA,” Allergy, vol. 62, p. 372, 2007. View at Google Scholar
  70. M. Record, K. Carayon, M. Poirot, and S. Silvente-Poirot, “Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies,” Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, vol. 1841, no. 1, pp. 108–120, 2014. View at Publisher · View at Google Scholar
  71. A. Sabapatha, C. Gercel-taylor, and D. D. Taylor, “Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences,” American Journal of Reproductive Immunology, vol. 56, no. 5-6, pp. 345–355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. W. G. Redman and I. L. Sargent, “Circulating microparticles in normal pregnancy and pre-eclampsia,” Placenta, vol. 29, pp. S73–S77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. S.-S. Luo, O. Ishibashi, G. Ishikawa et al., “Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes,” Biology of Reproduction, vol. 81, no. 4, pp. 717–729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Inagaki, H. Nishizawa, S. Ota et al., “Upregulation of HtrA4 in the placentas of patients with severe pre-eclampsia,” Placenta, vol. 33, no. 11, pp. 919–926, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. L. K. Harris, S. D. Smith, R. J. Keogh et al., “Trophoblast- and vascular smooth muscle cell-derived MMP-12 mediates elastolysis during uterine spiral artery remodeling,” The American Journal of Pathology, vol. 177, no. 4, pp. 2103–2115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. L. K. Harris, “IFPA Gabor Than Award lecture: transformation of the spiral arteries in human pregnancy: key events in the remodelling timeline,” Placenta, vol. 32, no. 2, pp. S154–S158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. A. C. Stenqvist, O. Nagaeva, V. Baranov, and L. Mincheva-Nilsson, “Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus,” The Journal of Immunology, vol. 191, no. 11, pp. 5515–5523, 2013. View at Publisher · View at Google Scholar
  78. E. Delorme-Axford, R. B. Donker, J. F. Mouillet et al., “Human placental trophoblasts confer viral resistance to recipient cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 29, pp. 12048–12053, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. H. D. Lee, Y. H. Kim, and D. S. Kim, “Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking,” European Journal of Immunology, vol. 44, no. 4, pp. 1156–1169, 2014. View at Google Scholar
  80. S. Taverna, A. Flugy, L. Saieva et al., “Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis,” International Journal of Cancer, vol. 130, no. 9, pp. 2033–2043, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Esser, U. Gehrmann, F. L. D'Alexandri et al., “Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration,” Journal of Allergy and Clinical Immunology, vol. 126, no. 5, pp. 1032.e4–1040.e4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. I. Nazarenko, S. Rana, A. Baumann et al., “Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation,” Cancer Research, vol. 70, no. 4, pp. 1668–1678, 2010. View at Google Scholar
  83. E. Hergenreider, S. Heydt, K. Tréguer et al., “Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs,” Nature Cell Biology, vol. 14, no. 3, pp. 249–256, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Kucharzewska, H. C. Christianson, J. E. Welch et al., “Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 18, pp. 7312–7317, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. R. B. Donker, J. F. Mouillet, T. Chu et al., “The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes,” Molecular Human Reproduction, vol. 18, no. 8, Article ID gas013, pp. 417–424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Atay, C. Gercel-Taylor, and D. D. Taylor, “Human trophoblast-derived exosomal fibronectin induces pro-inflammatory IL-1β production by macrophages,” American Journal of Reproductive Immunology, vol. 66, no. 4, pp. 259–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. J. E. Cartwright, R. Fraser, K. Leslie, A. E. Wallace, and J. L. James, “Remodelling at the maternal-fetal interface: relevance to human pregnancy disorders,” Reproduction, vol. 140, no. 6, pp. 803–813, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. E. A. Steegers, P. von Dadelszen, J. J. Duvekot, and R. Pijnenborg, “Pre-eclampsia,” The Lancet, vol. 376, no. 9741, pp. 631–644, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Lorquet, C. Pequeux, C. Munaut, and J.-M. Foidart, “Aetiology and physiopathology of preeclampsia and related forms,” Acta Clinica Belgica, vol. 65, no. 4, pp. 237–241, 2010. View at Google Scholar · View at Scopus
  90. C. W. G. Redman, D. S. Tannetta, R. A. Dragovic et al., “Review: does size matter? Placental debris and the pathophysiology of pre-eclampsia,” Placenta, vol. 33, supplement, pp. S48–S54, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Knight, C. W. G. Redman, E. A. Linton, and I. L. Sargent, “Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies,” British Journal of Obstetrics and Gynaecology, vol. 105, no. 6, pp. 632–640, 1998. View at Publisher · View at Google Scholar · View at Scopus
  92. D. S. Tannetta, R. A. Dragovic, C. Gardiner, C. W. Redman, and I. L. Sargent, “Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: expression of Flt-1 and endoglin,” PLoS ONE, vol. 8, no. 2, Article ID e56754, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. R. A. Dragovic, J. H. Southcombe, D. S. Tannetta, C. W. Redman, and I. L. Sargent, “Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma of normal pregnant and pre-eclamptic women,” Biology of Reproduction, vol. 89, no. 6, p. 151, 2013. View at Publisher · View at Google Scholar
  94. C. W. G. Redman, D. S. Tannetta, R. A. Dragovic et al., “Review: does size matter? Placental debris and the pathophysiology of pre-eclampsia,” Placenta, vol. 33, pp. S48–S54, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Vargas, S. Zhou, M. Ethier-Chiasson et al., “Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia,” FASEB Journal, vol. 28, no. 8, pp. 3703–3719, 2014. View at Publisher · View at Google Scholar
  96. D. Goswamia, D. S. Tannetta, L. A. Magee et al., “Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction,” Placenta, vol. 27, no. 1, pp. 56–61, 2006. View at Publisher · View at Google Scholar · View at Scopus