Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 697689, 9 pages
http://dx.doi.org/10.1155/2014/697689
Research Article

Association of vWA and TPOX Polymorphisms with Venous Thrombosis in Mexican Mestizos

1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360 México, DF, Mexico
2Unidad de Investigación Médica en Trombosis, Hemostasia y Aterogénesis, Instituto Mexicano del Seguro Social, México, DF, Mexico
3Laboratorio Biología Molecular Diagnóstica (BIMODI), Querétaro, QRO, Mexico
4Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360 México, DF, Mexico
5Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, Secretaría de Salud, México, DF, Mexico

Received 18 June 2014; Revised 15 August 2014; Accepted 18 August 2014; Published 31 August 2014

Academic Editor: Alice Santos-Silva

Copyright © 2014 Marco Antonio Meraz-Ríos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Diaz, A. T. Obi, D. D. Myers Jr. et al., “Critical review of mouse models of venous thrombosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 3, pp. 556–562, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. C. J. Bean, S. L. Boulet, D. Ellingsen et al., “Increased risk of venous thromboembolism is associated with genetic variation in heme oxygenase-1 in Blacks,” Thrombosis Research, vol. 130, no. 6, pp. 942–947, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Cushman, “Epidemiology and risk factors for venous thrombosis,” Seminars in Hematology, vol. 44, no. 2, pp. 62–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Danik, J. E. Buring, D. I. Chasman, R. Y. L. Zee, P. M. Ridker, and R. J. Glynn, “Lipoprotein(a), polymorphisms in the LPA gene, and incident venous thromboembolism among 21483 women,” Journal of Thrombosis and Haemostasis, vol. 11, no. 1, pp. 205–208, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Gulcher, “Microsatellite markers for linkage and association studies,” Cold Spring Harbor Protocols, vol. 7, no. 4, pp. 425–432, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. K. A. Bolton, J. P. Ross, D. M. Grice et al., “STaRRRT: a table of short tandem repeats in regulatory regions of the human genome,” BMC Genomics, vol. 14, article 795, 2013. View at Publisher · View at Google Scholar
  7. F. C. Grandi and W. An, “Non-LTR retrotransposons and microsatellites: partners in genomic variation,” Mobile Genetic Elements, vol. 3, no. 4, Article ID e25674, 2013. View at Google Scholar
  8. P. Jie, C. Xing, L. Tingting et al., “Genome association study of human chromosome 13 and susceptibility to coronary artery disease in a Chinese population,” Journal of Genetics, vol. 92, no. 1, pp. 85–91, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Ewodo, C. T. Nguefack, D. Adiogo et al., “Changes of Von Willebrand factor concentration during pregnancy,” Annales de Biologie Clinique, vol. 72, pp. 292–296, 2014. View at Google Scholar
  10. Z. Zhou, F. Yu, A. Buchanan, Y. Fu et al., “Possible race and gender divergence in association of genetic variations with plasma von Willebrand factor: a study of ARIC and 1000 genome cohorts,” PLoS ONE, vol. 9, Article ID e84810, 2014. View at Google Scholar
  11. M. Campos, A. Buchanan, F. Yu et al., “Influence of single nucleotide polymorphisms in factor VIII and von Willebrand factor genes on plasma factor VIII activity: the ARIC Study,” Blood, vol. 119, no. 8, pp. 1929–1934, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Laird, P. M. Schneider, and S. Gaudieri, “Forensic STRs as potential disease markers: a study of VWA and von Willebrand's Disease,” Forensic Science International: Genetics, vol. 1, no. 3-4, pp. 253–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. L. Carty, M. Cushman, D. Jones et al., “Associations between common fibrinogen gene polymorphisms and cardiovascular disease in older adults: the cardiovascular health study,” Thrombosis and Haemostasis, vol. 99, no. 2, pp. 388–395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Y. L. Cheung, M. J. Bos, F. W. G. Leebeek et al., “Variation in fibrinogen FGG and FGA genes and risk of stroke: the Rotterdam study,” Thrombosis and Haemostasis, vol. 100, no. 2, pp. 308–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Y.-L. Ko, L.-A. Hsu, T.-S. Hsu et al., “Functional polymorphisms of FGA, encoding α fibrinogen, are associated with susceptibility to venous thromboembolism in a Taiwanese population,” Human Genetics, vol. 119, no. 1-2, pp. 84–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Le Gal, B. Delahousse, K. Lacut et al., “Fibrinogen Aα-Thr312Ala and factor XIII-A Val34Leu polymorphisms in idiopathic venous thromboembolism,” Thrombosis Research, vol. 121, no. 3, pp. 333–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Erem, H. O. Ersoz, S. S. Karti et al., “Blood coagulation and fibrinolysis in patients with hyperthyroidism,” Journal of Endocrinological Investigation, vol. 25, no. 4, pp. 345–350, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. B. van Zaane, A. Squizzato, R. Huijgen et al., “Increasing levels of free thyroxine as a risk factor for a first venous thrombosis: a case-control study,” Blood, vol. 115, no. 22, pp. 4344–4349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Gemayel, M. D. Vinces, M. Legendre, and K. J. Verstrepen, “Variable tandem repeats accelerate evolution of coding and regulatory sequences,” Annual Review of Genetics, vol. 44, pp. 445–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Noris, C. Santana, M. A. Meraz-Ríos et al., “Mexican mestizo population sub-structure: effects on genetic and forensic statistical parameters,” Molecular Biology Reports, vol. 39, no. 12, pp. 10139–10156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Kimpton, A. Walton, and P. Gill, “A further tetranucleotide repeat polymorphism in the vWF gene,” Human Molecular Genetics, vol. 1, no. 4, p. 287, 1992. View at Google Scholar · View at Scopus
  22. R. Anker, T. Steinbrueck, and H. Donis-Keller, “Tetranucleotide repeat polymorphism at the human thyroid peroxidase (hTPO) locus,” Human Molecular Genetics, vol. 1, no. 2, article 137, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. Promega Corporation, http://www.cstl.nist.gov.
  24. L. Excoffier, G. Laval, and S. Schneider, “Arlequin (version 3.0): an integrated software package for population genetics data analysis,” Evolutionary Bioinformatics Online, vol. 1, pp. 47–50, 2005. View at Google Scholar
  25. K. Belkhir, P. Borsa, L. Chikhi, N. Raufaste, and F. Bonhomme, “GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations,” Laboratoire Génome, Populations, Interactions, 1996–2004.
  26. Epiinfo software V. 7., http://wwwn.cdc.gov/epiinfo/.
  27. J. K. Pritchard and N. A. Rosenberg, “Use of unlinked genetic markers to detect population stratification in association studies,” The American Journal of Human Genetics, vol. 65, no. 1, pp. 220–228, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. A. B. Gómez, J. J. Magaña, B. Cisneros et al., “Association of the estrogen receptor α gene polymorphisms with osteoporosis in the Mexican population,” Clinical Genetics, vol. 72, no. 6, pp. 574–581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. K. Pritchard and P. Donnelly, “Case-control studies of association in structured or admixed populations,” Theoretical Population Biology, vol. 60, no. 3, pp. 227–237, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. M. L. Freedman, D. Reich, K. L. Penney et al., “Assessing the impact of population stratification on genetic association studies,” Nature Genetics, vol. 36, no. 4, pp. 388–393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Little, J. P. T. Higgins, J. P. A. Ioannidis et al., “Strengthening the Reporting of genetic association studies (STREGA)—an extension of the strobe statement,” PLoS Medicine, vol. 6, no. 2, Article ID e1000022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Fekih-Mrissa, S. Klai, M. Mrad et al., “Role of methylenetetrahydrofolate reductase A1298C polymorphism in cerebral venous thrombosis,” Blood Coagulation and Fibrinolysis, vol. 24, no. 2, pp. 118–119, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. K. W. Park, J. J. Park, J. Kang et al., “Paraoxonase 1 gene polymorphism does not affect clopidogrel response variability but is associated with clinical outcome after PCI,” PLoS ONE, vol. 8, no. 2, Article ID e52779, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. N. L. Smith, K. M. Rice, E. G. Bovill et al., “Genetic variation associated with plasma von Willebrand factor levels and the risk of incident venous thrombosis,” Blood, vol. 117, no. 22, pp. 6007–6011, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Tang, C. Schwienbacher, L. M. Lopez et al., “Genetic associations for activated partial thromboplastin time and prothrombin time, their gene expression profiles, and risk of coronary artery disease,” The American Journal of Human Genetics, vol. 91, no. 1, pp. 152–162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. N. A. Turner and J. Moake, “Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis,” PLoS ONE, vol. 8, no. 3, Article ID e59372, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. M. C. van Schie, M. P. M. de Maat, A. Isaacs et al., “Variation in the von Willebrand factor gene is associated with von Willebrand factor levels and with the risk for cardiovascular disease,” Blood, vol. 117, no. 4, pp. 1393–1399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Daidone, E. Pontara, C. Romualdi et al., “Microsatellite (GT)n is part of the von Willebrand factor (VWF) promoter region that influences the glucocorticoid-induced increase in VWF in Cushing's syndrome,” Thrombosis Research, vol. 125, no. 6, pp. e275–e280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Squizzato, E. Romualdi, E. Piantanida et al., “Subclinical hypothyroidism and deep venous thrombosis: a pilot cross-sectional study,” Thrombosis and Haemostasis, vol. 97, no. 5, pp. 803–806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. D. Meltzer, First Peoples in a New World: Colonizing Ice Age America, University of California Press, 2009.
  41. N. A. Johnson, M. A. Coram, M. D. Shriver et al., “Ancestral components of admixed genomes in a Mexican cohort,” PLoS Genetics, vol. 7, no. 12, Article ID e1002410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Li and C. Li, “Assessing departure from Hardy-Weinberg equilibrium in the presence of disease association,” Genetic Epidemiology, vol. 32, no. 7, pp. 589–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H.-W. Deng, W.-M. Chen, and R. R. Recker, “Population admixture: detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits,” Genetics, vol. 157, no. 2, pp. 885–897, 2001. View at Google Scholar · View at Scopus
  44. I. Kardys, A. G. Uitterlinden, A. Hofman, J. C. M. Witteman, and M. P. M. de Maat, “Fibrinogen gene haplotypes in relation to risk of coronary events and coronary and extracoronary atherosclerosis: the Rotterdam Study,” Thrombosis & Haemostasis, vol. 97, no. 2, pp. 288–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Jood, J. Danielson, C. Ladenvall, C. Blomstrand, and C. Jern, “Fibrinogen gene variation and ischemic stroke,” Journal of Thrombosis and Haemostasis, vol. 6, no. 6, pp. 897–904, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Haldar and S. Ghosh, “Effect of population stratification on false positive rates of population-based association analyses of quantitative traits,” Annals of Human Genetics, vol. 76, no. 3, pp. 237–245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. L. R. Cardon and L. J. Palmer, “Population stratification and spurious allelic association,” The Lancet, vol. 361, no. 9357, pp. 598–604, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Hui, Y. Jing, M. Rui, and Y. Weijian, “Novel association analysis between 9 short tandem repeat loci polymorphisms and coronary heart disease based on a cross-validation design,” Atherosclerosis, vol. 218, no. 1, pp. 151–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Sawaya, A. Bagshaw, E. Buschiazzo et al., “Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements,” PLoS ONE, vol. 8, no. 2, Article ID e54710, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. E. A. D. Hammock and L. J. Young, “Genetics: microsatellite instability generates diversity in brain and sociobehavioral traits,” Science, vol. 308, no. 5728, pp. 1630–1634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Heidari, Z. N. S. Fam, E. Esmaeilzadeh-Gharehdaghi et al., “Core promoter STRs: novel mechanism for inter-individual variation in gene expression in humans,” Gene, vol. 492, no. 1, pp. 195–198, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. A. R. Iglesias, E. Kindlund, M. Tammi, and C. Wadelius, “Some microsatellites may act as novel polymorphic cis-regulatory elements through transcription factor binding,” Gene, vol. 341, no. 1-2, pp. 149–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Paul, W. Dansithong, S. P. Jog et al., “Expanded CUG repeats dysregulate RNA splicing by altering the stoichiometry of the muscleblind 1 complex,” The Journal of Biological Chemistry, vol. 286, no. 44, pp. 38427–38438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Jansen, R. Gemayel, and K. J. Verstrepen, “Unstable microsatellite repeats facilitate rapid evolution of coding and regulatory sequences,” Genome Dynamics, vol. 7, pp. 108–125, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. V. Albanèse, N. F. Biguet, H. Kiefer, E. Bayard, J. Mallet, and R. Meloni, “Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite,” Human Molecular Genetics, vol. 10, no. 17, pp. 1785–1792, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Klintschar, D. Stiller, P. Schwaiger, and M. Kleiber, “DNA polymorphisms in the tyrosin hydroxylase and GNB3 genes: association with unexpected death from acute myocardial infarction and increased heart weight,” Forensic Science International, vol. 153, no. 2-3, pp. 142–146, 2005. View at Publisher · View at Google Scholar · View at Scopus