Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 698256, 13 pages
http://dx.doi.org/10.1155/2014/698256
Review Article

Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies

Plastic and Reconstructive Surgery Unit, St. Vincent’s Hospital, 41 Victoria Parade, Fitzroy, Melbourne, VIC 3065, Australia

Received 24 February 2014; Accepted 16 June 2014; Published 3 September 2014

Academic Editor: Mario I. Romero-Ortega

Copyright © 2014 D. Grinsell and C. P. Keating. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Lundborg, “Nerve injury and repair—a challenge to the plastic brain,” Journal of the Peripheral Nervous System, vol. 8, no. 4, pp. 209–226, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. Taylor, D. Braza, J. B. Rice, and T. Dillingham, “The incidence of peripheral nerve injury in extremity trauma,” The American Journal of Physical Medicine and Rehabilitation, vol. 87, no. 5, pp. 381–385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Kouyoumdjian, “Peripheral nerve injuries: a retrospective survey of 456 cases,” Muscle and Nerve, vol. 34, no. 6, pp. 785–788, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Siemionow and G. Brzezicki, “Chapter 8 current techniques and concepts in peripheral nerve repair,” International Review of Neurobiology, vol. 87, no. C, pp. 141–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. G. Thomson, “Median and ulnar nerve injuries: A meta-analysis of predictors of motor and sensory recovery after modern microsurgical nerve repair: Discussion,” Plastic and Reconstructive Surgery, vol. 116, no. 2, pp. 495–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. M. E. Brushart, “The mechanical and humoral control of specificity in nerve repair,” in Operative Nerve Repair, R. H. Gelberman, Ed., pp. 215–230, JB Lippincott, Philadelphia, Pa, USA, 1991. View at Google Scholar
  7. P. Aegineta, De re medica, Paulou Aiginetou iatrou aristou biblia hepta. En arche hekastou ton biblion deiknytai ta en ekeino pereichomena, Pavli Aeginetae medici optimi, libri septem, 1528.
  8. A. Waller, “Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres,” Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol. 140, pp. 423–429, 1850. View at Google Scholar
  9. H. Millesi, “Microsurgery of peripheral nerves,” Hand, vol. 5, no. 2, pp. 157–160, 1973. View at Publisher · View at Google Scholar · View at Scopus
  10. S. R. Y. Cajal, “La retine des vertebres,” La Cellule, vol. 9, pp. 121–133, 1892. View at Google Scholar
  11. T. Kurze, “Microtechniques in neurological surgery,” Clinical Neurosurgery, vol. 11, pp. 128–137, 1964. View at Google Scholar · View at Scopus
  12. J. W. Smith, “Microsurgery of peripheral nerves,” Plastic and Reconstructive Surgery, vol. 33, pp. 317–329, 1964. View at Google Scholar
  13. S. Sunderland, Nerve Injuries and Their Repair: A Critical Appraisal, Churchill Livingstone, New York, NY, USA, 1991.
  14. Q. Zhao, “Experimental studies of specific neuro-chemotaxis in peripheral nerve regeneration in the rat,” Zhonghua Yi Xue Za Zhi, vol. 70, no. 4, pp. 191–194, 1990. View at Google Scholar · View at Scopus
  15. Y. A. Pan, T. Misgeld, J. W. Lichtman, and J. R. Sanes, “ffects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo,” Journal of Neuroscience, vol. 23, no. 36, pp. 11479–11488, 2003. View at Google Scholar · View at Scopus
  16. S. Sunderland, “The intraneural topography of the radial, median and ulnar nerves,” Brain, vol. 68, no. 4, pp. 243–298, 1945. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sunderland and L. J. Ray, “The intraneural topography of the sciatic nerve and its popliteal divisions in man,” Brain, vol. 71, part 3, pp. 242–273, 1948. View at Publisher · View at Google Scholar · View at Scopus
  18. A. J. Flores, C. J. Lavernia, and P. W. Owens, “Anatomy and physiology of peripheral nerve injury and repair.,” The American Journal of Orthopedics, vol. 29, no. 3, pp. 167–173, 2000. View at Google Scholar · View at Scopus
  19. G. D. Bittner, T. Schallert, and J. D. Peduzzi, “Degeneration, trophic interactions, and repair of severed axons: a reconsideration of some common assumptions,” Neuroscientist, vol. 6, no. 2, pp. 88–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. B. J. Pfister, T. Gordon, J. R. Loverde, A. S. Kochar, S. E. Mackinnon, and D. Kacy Cullen, “Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges,” Critical Reviews in Biomedical Engineering, vol. 39, no. 2, pp. 81–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. G. Menorca, T. S. Fussell, and J. C. Elfar, “Nerve physiology. Mechanisms of injury and recovery,” Hand Clinics, vol. 29, no. 3, pp. 317–330, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. L. M. Schwartz, “Atrophy and programmed cell death of skeletal muscle,” Cell Death and Differentiation, vol. 15, no. 7, pp. 1163–1169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. W. Griffin, M. V. Hogan, A. B. Chhabra, and D. N. Deal, “Peripheral nerve repair and reconstruction,” Journal of Bone and Joint Surgery A, vol. 95, no. 23, pp. 2144–2151, 2013. View at Publisher · View at Google Scholar
  24. S. K. Lee and S. W. Wolfe, “Peripheral nerve injury and repair,” Journal of the American Academy of Orthopaedic Surgeons, vol. 8, no. 4, pp. 243–252, 2000. View at Google Scholar · View at Scopus
  25. G. Lundborg, L. B. Dahlin, N. Danielsen, and A. K. Nachemson, “Tissue specificity in nerve regeneration,” Scandinavian Journal of Plastic and Reconstructive Surgery, vol. 20, no. 3, pp. 279–283, 1986. View at Google Scholar
  26. A. K. Nachemson, H. A. Hansson, and G. Lundborg, “Neurotropism in nerve regeneration: an immunohistochemical study,” Acta Physiologica Scandinavica, vol. 133, no. 2, pp. 139–148, 1988. View at Publisher · View at Google Scholar · View at Scopus
  27. T. M. E. Brushart, “Preferential reinnervation of motor nerves by regenerating motor axons,” Journal of Neuroscience, vol. 8, no. 3, pp. 1026–1031, 1988. View at Google Scholar · View at Scopus
  28. N. Li, J. E. Downey, A. Bar-Shir et al., “Optogenetic-guided cortical plasticity after nerve injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 21, pp. 8838–8843, 2011. View at Google Scholar
  29. H. J. Seddon, “The use of autogenous grafts for the repair of large gaps in peripheral nerves,” The British Journal of Surgery, vol. 35, no. 138, pp. 151–167, 1947. View at Google Scholar
  30. S. Sunderland, “The function of nerve fibers whose structure has been disorganized,” Anatomical Record, vol. 109, no. 3, pp. 503–513, 1951. View at Google Scholar
  31. S. E. Mackinnon and A. L. Dellon, “Nerve repair and nerve grafts,” in Surgery of the Peripheral Nerve, S. E. Mackinnon, Ed., Thieme, New York, NY, USA, 1988. View at Google Scholar
  32. C. R. Effron and R. W. Beasley, “Compression neuropathies in the upper limb and electrophysiological studies,” in Grabb and Smith's Plastic Surgery, C. H. Thorne, S. P. Bartlett, R. W. Beasley, S. J. Aston, G. C. Gurtner, and S. L. Spear, Eds., chapter 86, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2006. View at Google Scholar
  33. L. R. Robinson, “Traumatic injury to peripheral nerves,” Muscle Nerve, vol. 23, no. 6, pp. 863–873, 2000. View at Google Scholar
  34. S. E. Mackinnon, “New directions in peripheral nerve surgery,” Annals of Plastic Surgery, vol. 22, no. 3, pp. 257–273, 1989. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Y. Fu and T. Gordon, “Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation,” Journal of Neuroscience, vol. 15, no. 5, pp. 3886–3895, 1995. View at Google Scholar · View at Scopus
  36. S. Y. Fu and T. Gordon, “Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy,” Journal of Neuroscience, vol. 15, part 2, no. 5, pp. 3876–3885, 1995. View at Google Scholar · View at Scopus
  37. G. Lundborg, “A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance,” Journal of Hand Surgery, vol. 25, no. 3, pp. 391–414, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. K. L. Colen, M. Choi, and D. T. W. Chiu, “Nerve grafts and conduits,” Plastic and Reconstructive Surgery, vol. 124, no. 6, supplement, pp. e386–e394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Millesi, G. Meissl, and A. Berger, “The interfascicular nerve-grafting of the median and ulnar nerves,” Journal of Bone and Joint Surgery A, vol. 54, no. 4, pp. 727–750, 1972. View at Google Scholar · View at Scopus
  40. G. I. Taylor and F. J. Ham, “The free vascularized nerve graft. A further experimental and clinical application of microvascular techniques,” Plastic and Reconstructive Surgery, vol. 57, no. 4, pp. 413–425, 1976. View at Google Scholar · View at Scopus
  41. J. K. Terzis and V. K. Kostopoulos, “Vascularized nerve grafts and vascularized fascia for upper extremity nerve reconstruction,” Hand, vol. 5, no. 1, pp. 19–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Millesi, “Progress in peripheral nerve reconstruction,” World Journal of Surgery, vol. 14, no. 6, pp. 733–747, 1990. View at Publisher · View at Google Scholar · View at Scopus
  43. A. M. Moore, W. Z. Ray, K. E. Chenard, T. Tung, and S. E. Mackinnon, “Nerve allotransplantation as it pertains to composite tissue transplantation,” Hand, vol. 4, no. 3, pp. 239–244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. F. E. Karabekmez, A. Duymaz, and S. L. Moran, “Early clinical outcomes with the use of decellularized nerve allograft for repair of sensory defects within the hand,” Hand, vol. 4, no. 3, pp. 245–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. S. Cho, B. D. Rinker, R. V. Weber et al., “Functional outcome following nerve repair in the upper extremity using processed nerve allograft,” The Journal of Hand Surgery, vol. 37, no. 11, pp. 2340–2349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Konofaos and J. P. ver Halen, “Nerve repair by means of tubulization: past, present, future,” Journal of Reconstructive Microsurgery, vol. 29, no. 3, pp. 149–164, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. D. T. W. Chiu and B. Strauch, “A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less,” Plastic and Reconstructive Surgery, vol. 86, no. 5, pp. 928–934, 1990. View at Google Scholar · View at Scopus
  48. B. Rinker and J. Y. Liau, “A prospective randomized study comparing woven polyglycolic acid and autogenous vein conduits for reconstruction of digital nerve gaps,” Journal of Hand Surgery, vol. 36, no. 5, pp. 775–781, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Sunderland, “The anatomy and physiology of nerve injury,” Muscle and Nerve, vol. 13, no. 9, pp. 771–784, 1990. View at Publisher · View at Google Scholar · View at Scopus
  50. S. K. Lee and S. W. Wolfe, “Nerve transfers for the upper extremity: new horizons in nerve reconstruction,” Journal of the American Academy of Orthopaedic Surgeons, vol. 20, no. 8, pp. 506–517, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. R. I. Harris, “The treatment of irreparable nerve injuries,” Canadian Medical Association Journal, vol. 11, no. 11, pp. 833–841, 1921. View at Google Scholar
  52. A. H. Wong, T. J. Pianta, and D. J. Mastella, “Nerve Transfers,” Hand Clinics, vol. 28, no. 4, pp. 571–577, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. T. M. Myckatyn and S. E. Mackinnon, “Microsurgical repair of peripheral nerves and nerve grafts,” in Grabb & Smith's Plastic Surgery, C. H. Thorne, S. P. Bartlett, R. W. Beasley, S. J. Aston, G. C. Gurtner, and S. L. Spear, Eds., Lippincott Williams & Wilkins, 2006. View at Google Scholar
  54. B. T. Carlsen, A. T. Bishop, and A. Y. Shin, “Late reconstruction for brachial plexus injury,” Neurosurgery Clinics of North America, vol. 20, no. 1, pp. 51–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Dodakundi, K. Doi, Y. Hattori et al., “Outcome of surgical reconstruction after traumatic total brachial plexus palsy,” Journal of Bone and Joint Surgery, vol. 95, no. 16, pp. 1505–1512, 2013. View at Google Scholar
  56. J. G. Spector, A. Derby, P. Lee, and D. G. Roufa, “Comparison of rabbit facial nerve regeneration in nerve growth factor- containing silicone tubes to that in autologous neural grafts,” Annals of Otology, Rhinology and Laryngology, vol. 104, no. 11, pp. 875–885, 1995. View at Google Scholar · View at Scopus
  57. H. T. Khuong and R. Midha, “Advances in nerve repair,” Current neurology and neuroscience reports, vol. 13, no. 1, p. 322, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Gordon, N. Amirjani, D. C. Edwards, and K. M. Chan, “Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients,” Experimental Neurology, vol. 223, no. 1, pp. 192–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Chang, S. Hsu, H. Yen, and H. Chang, “Effects of unidirectional permeability in asymmetric poly(DL-lactic acid-co-glycolic acid) conduits on peripheral nerve regeneration: an in vitro and in vivo study,” Journal of Biomedical Materials Research B Applied Biomaterials, vol. 83, no. 1, pp. 206–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. A. C. O'Neill, M. A. Randolph, K. E. Bujold, I. E. Kochevar, R. W. Redmond, and J. M. Winograd, “Photochemical sealing improves outcome following peripheral neurorrhaphy,” Journal of Surgical Research, vol. 151, no. 1, pp. 33–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. A. C. O'Neill, M. A. Randolph, K. E. Bujold, I. E. Kochevar, R. W. Redmond, and J. M. Winograd, “Preparation and integration of human amnion nerve conduits using a light-activated technique,” Plastic and Reconstructive Surgery, vol. 124, no. 2, pp. 428–437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. T. S. Johnson, A. C. O'Neill, P. M. Motarjem et al., “Photochemical tissue bonding: a promising technique for peripheral nerve repair,” Journal of Surgical Research, vol. 143, no. 2, pp. 224–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. F. P. Henry, N. A. Goyal, W. S. David et al., “Improving electrophysiologic and histologic outcomes by photochemically sealing amnion to the peripheral nerve repair site,” Surgery, vol. 145, no. 3, pp. 313–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Tse and J. H. Ko, “Nerve glue for upper extremity reconstruction,” Hand Clinics, vol. 28, no. 4, pp. 529–540, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. D. V. Egloff and A. Narakas, “Nerve anastomoses with human fibrin. Preliminary clinical report (56 cases),” Annales de Chirurgie de la Main, vol. 2, no. 2, pp. 101–115, 1983. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Narakas, “The use of fibrin glue in repair of peripheral nerves,” Orthopedic Clinics of North America, vol. 19, no. 1, pp. 187–199, 1988. View at Google Scholar · View at Scopus
  67. M. Sameem, T. J. Wood, and J. R. Bain, “A systematic review on the use of fibrin glue for peripheral nerve repair,” Plastic and Reconstructive Surgery, vol. 127, no. 6, pp. 2381–2390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. C. L. F. Temple, D. C. Ross, C. E. Dunning, and J. A. Johnson, “Resistance to disruption and gapping of peripheral nerve repairs: an in vitro biomechanical assessment of techniques,” Journal of Reconstructive Microsurgery, vol. 20, no. 8, pp. 645–650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Lin, D. Yang, I. Chu et al., “DuraSeal as a ligature in the anastomosis of rat sciatic nerve gap injury,” Journal of Surgical Research, vol. 161, no. 1, pp. 101–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. G. D. Bittner, C. P. Keating, J. R. Kane et al., “Rapid, effective, and long-lasting behavioral recovery produced by microsutures, methylene blue, and polyethylene glycol after completely cutting rat sciatic nerves,” Journal of Neuroscience Research, vol. 90, no. 5, pp. 967–980, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. J. M. Britt, J. R. Kane, C. S. Spaeth et al., “Polyethylene glycol rapidly restores axonal integrity and improves the rate of motor behavior recovery after sciatic nerve crush injury,” Journal of Neurophysiology, vol. 104, no. 2, pp. 695–703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. K. W. Sexton, A. C. Pollins, N. L. Cardwell et al., “Hydrophilic polymers enhance early functional outcomes after nerve autografting,” Journal of Surgical Research, vol. 177, no. 2, pp. 392–400, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. H. B. Williams, “A clinical pilot study to assess functional return following continuous muscle stimulation after nerve injury and repair in the upper extremity using a completely implantable electrical system,” Microsurgery, vol. 17, no. 11, pp. 597–605, 1996. View at Google Scholar
  74. H. B. Williams, “The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study,” Microsurgery, vol. 17, no. 11, pp. 589–96, 1996. View at Google Scholar