Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 721968, 13 pages
http://dx.doi.org/10.1155/2014/721968
Research Article

Vascular Endothelial Growth Factor Increases during Blood-Brain Barrier-Enhanced Permeability Caused by Phoneutria nigriventer Spider Venom

1Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), 13084-971 Campinas, SP, Brazil
2Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
3Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil

Received 25 May 2014; Revised 26 July 2014; Accepted 5 August 2014; Published 27 August 2014

Academic Editor: Yoshinori Marunaka

Copyright © 2014 Monique C. P. Mendonça et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Bucaretchi, C. R. de Deus Reinaldo, S. Hyslop, P. R. Madureira, E. M. De Capitani, and R. J. Vleira, “A clinico-epidemiological study of bites by spiders of the genus phoneutrla,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 42, no. 1, pp. 17–21, 2000. View at Google Scholar · View at Scopus
  2. F. Bucaretchi, S. M. Mello, R. J. Vieira et al., “Systemic envenomation caused by the wandering spider Phoneutria nigriventer, with quantification of circulating venom,” Clinical Toxicology, vol. 46, no. 9, pp. 885–889, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. L. P. Le Sueur, C. B. Collares-Buzato, and M. A. da Cruz-Höfling, “Mechanisms involved in the blood-brain barrier increased permeability induced by Phoneutria nigriventer spider venom in rats,” Brain Research, vol. 1027, no. 1-2, pp. 38–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Rapôso, P. A. M. Odorissi, A. L. R. Oliveira et al., “Effect of Phoneutria nigriventer venom on the expression of junctional protein and P-gp efflux pump function in the blood-brain barrier,” Neurochemical Research, vol. 37, no. 9, pp. 1967–1981, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. L. le Sueur, E. Kalapothakis, and M. A. da Cruz-Höfling, “Breakdown of the blood-brain barrier and neuropathological changes induced by Phoneutria nigriventer spider venom,” Acta Neuropathologica, vol. 105, no. 2, pp. 125–134, 2003. View at Google Scholar · View at Scopus
  6. C. Rapôso, G. M. Zago, G. H. da Silva, and M. A. da Cruz Höfling, “Acute blood-brain barrier permeabilization in rats after systemic Phoneutria nigriventer venom,” Brain Research, vol. 1149, no. 1, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. A. da Cruz-Höfling, C. Rapôso, L. Verinaud, and G. M. Zago, “Neuroinflammation and astrocytic reaction in the course of Phoneutria nigriventer (armed-spider) blood-brain barrier (BBB) opening,” NeuroToxicology, vol. 30, no. 4, pp. 636–646, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. da Cruz-Höfling, G. M. Zago, L. L. Melo, and C. Rapôso, “C-FOS and n-NOS reactive neurons in response to circulating Phoneutria nigriventer spider venom,” Brain Research Bulletin, vol. 73, no. 1–3, pp. 114–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. M. Stavale, E. S. Soares, M. C. P. Mendonça, S. P. Irazusta, and M. A. da Cruz Höfling, “Temporal relationship between aquaporin-4 and glial fibrillary acidic protein in cerebellum of neonate and adult rats administered a BBB disrupting spider venom,” Toxicon, vol. 66, pp. 37–46, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Nagy, L. Benjamin, H. Zeng, A. M. Dvorak, and H. F. Dvorak, “Vascular permeability, vascular hyperpermeability and angiogenesis,” Angiogenesis, vol. 11, no. 2, pp. 109–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Sun and X. Guo, “Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor,” Journal of Neuroscience Research, vol. 79, no. 1-2, pp. 180–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Rosenstein, J. M. Krum, and C. Ruhrberg, “VEGF in the nervous system,” Organogenesis, vol. 6, no. 2, pp. 107–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Sun and Y. Ma, “Vascular endothelial growth factor modulates voltage-gated Na+ channel properties and depresses action potential firing in cultured rat hippocampal neurons,” Biological and Pharmaceutical Bulletin, vol. 36, no. 4, pp. 548–555, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Cammalleri, D. Martini, C. Ristori, A. M. Timperio, and P. Bagnoli, “Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity,” European Journal of Neuroscience, vol. 33, no. 3, pp. 482–498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. De Vries, J. A. Escobedo, H. Ueno, K. Houck, N. Ferrara, and L. T. Williams, “The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor,” Science, vol. 255, no. 5047, pp. 989–991, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. B. I. Terman, M. Dougher-Vermazen, M. E. Carrion et al., “Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor,” Biochemical and Biophysical Research Communications, vol. 187, no. 3, pp. 1579–1586, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. P. Mendonça, E. Siqueira Soares, L. Miguel Stávale, S. Pierre Irazusta, and M. A. da Cruz-Höfling, “Upregulation of the vascular endothelial growth factor, Flt-1, in rat hippocampal neurons after envenoming by Phoneutria nigriventer; age-related modulation,” Toxicon, vol. 60, no. 4, pp. 656–664, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Zachary and G. Gliki, “Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family,” Cardiovascular Research, vol. 49, no. 3, pp. 568–581, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Obermeier, R. Daneman, and R. M. Ransohoff, “Development, maintenance and disruption of the blood-brain barrier,” Nature Medicine, vol. 19, no. 12, pp. 1584–1596, 2013. View at Google Scholar
  20. W. G. Mayhan, “VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway,” The American Journal of Physiology, vol. 276, no. 5, pp. C1148–C1153, 1999. View at Google Scholar · View at Scopus
  21. Z. G. Zhang, L. Zhang, Q. Jiang et al., “VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain,” The Journal of Clinical Investigation, vol. 106, no. 7, pp. 829–838, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. G. Zhang, L. Zhang, W. Tsang et al., “Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 4, pp. 379–392, 2002. View at Google Scholar
  23. W. T. Monacci, M. J. Merrill, and E. H. Oldfield, “Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues,” American Journal of Physiology, vol. 264, no. 4, pp. C995–C1002, 1993. View at Google Scholar · View at Scopus
  24. C. R. de Almodovar, C. Coulon, P. A. Salin et al., “Matrix-binding vascular endothelial growth factor (VEGF) isoforms guide granule cell migration in the cerebellum via VEGF receptor Flk1,” Journal of Neuroscience, vol. 30, no. 45, pp. 15052–15066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Meissirel, C. R. de Almodovar, E. Knevels et al., “VEGF modulates NMDA receptors activity in cerebellar granule cells through src-family kinases before synapse formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 33, pp. 13782–13787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Acker, H. Beck, and K. H. Plate, “Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization,” Mechanisms of Development, vol. 108, no. 1-2, pp. 45–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Kaur, V. Sivakumar, Y. Zhang, and E. A. Ling, “Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum,” Glia, vol. 54, no. 8, pp. 826–839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Y. Leung, A. S. Y. Chan, M. P. Wong, S. T. Yuen, N. Cheung, and L. P. Chung, “Expression of vascular endothelial growth factor and its receptors in pilocytic astrocytoma,” The American Journal of Surgical Pathology, vol. 21, no. 8, pp. 941–950, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Papavassiliou, N. Gogate, M. Proescholdt et al., “Vascular endothelial growth factor (vascular permeability factor) expression in injured rat brain,” Journal of Neuroscience Research, vol. 49, no. 4, pp. 451–460, 1997. View at Google Scholar
  30. K. Matsui and C. E. Jahr, “Differential control of synaptic and ectopic vesicular release of glutamate,” The Journal of Neuroscience, vol. 24, no. 41, pp. 8932–8939, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Zacchigna, D. Lambrechts, and P. Carmeliet, “Neurovascular signalling defects in neurodegeneration,” Nature Reviews Neuroscience, vol. 9, no. 3, pp. 169–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Love and M. A. Cruz-Hofling, “Acute swelling of nodes of Ranvier caused by venoms which slow inactivation of sodium channels,” Acta Neuropathologica, vol. 70, no. 1, pp. 1–9, 1986. View at Google Scholar · View at Scopus
  33. M. V. Gomez, E. Kalapothakis, C. Guatimosim, and M. A. M. Prado, “Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels,” Cellular and Molecular Neurobiology, vol. 22, no. 5-6, pp. 579–588, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. R. A. Mafra, S. G. Figueiredo, C. R. Diniz, M. N. Cordeiro, J. Dos Santos Cruz, and M. E. de Lima, “Phtx4, a new class of toxins from Phoneutria nigriventer spider venom, inhibits the glutamate uptake in rat brain synaptosomes,” Brain Research, vol. 831, no. 1-2, pp. 297–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. M. Prado, C. Guatimosim, M. V. Gomez, C. R. Diniz, M. N. Cordeiro, and M. A. Romano-Silva, “A novel tool for the investigation of glutamate release from rat cerebrocortical synaptosomes: the toxin Tx3-3 from the venom of the spider Phoneutria nigriventer,” The Biochemical Journal, vol. 314, no. 1, pp. 145–150, 1996. View at Google Scholar · View at Scopus
  36. A. C. N. Pinheiro, R. S. Gomez, A. R. Massensini et al., “Neuroprotective effect on brain injury by neurotoxins from the spider Phoneutria nigriventer,” Neurochemistry International, vol. 49, no. 5, pp. 543–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Altman and S. A. Bayer, Development of the Cerebellar System in Relation to Its Evolution, Structure and Functions, CRC Press, New York, NY, USA, 1997.
  38. W. Risau, S. Esser, and B. Engelhardt, “Differentiation of blood-brain barrier endothelial cells,” Pathologie Biologie, vol. 46, no. 3, pp. 171–175, 1998. View at Google Scholar · View at Scopus
  39. C. Gewehr, S. M. Oliveira, M. F. Rossato et al., “Mechanisms involved in the nociception triggered by the venom of the armed spider Phoneutria nigriventer,” PLoS Neglected Tropical Diseases, vol. 7, no. 4, Article ID e2198, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Kunz, J. Nussberger, M. Holtmannspätter, H. Bitterling, N. Plesnila, and S. Zausinger, “Bradykinin in blood and cerebrospinal fluid after acute cerebral lesions: correlations with cerebral edema and intracranial pressure,” Journal of Neurotrauma, vol. 30, no. 19, pp. 1638–1644, 2013. View at Publisher · View at Google Scholar
  41. C. Emanueli, P. Schratzberger, R. Kirchmair, and P. Madeddu, “Paracrine control of vascularization and neurogenesis by neurotrophins,” British Journal of Pharmacology, vol. 140, no. 4, pp. 614–619, 2003. View at Publisher · View at Google Scholar · View at Scopus