Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 727428, 9 pages
http://dx.doi.org/10.1155/2014/727428
Review Article

Therapeutic Implications of Estrogen for Cerebral Vasospasm and Delayed Cerebral Ischemia Induced by Aneurysmal Subarachnoid Hemorrhage

1Department of Neurosurgery, University of Virginia, Charlottesville, VA 22908, USA
2Department of Neurosurgery, Tulane University, New Orleans, LA 70112, USA
3Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
4Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
5Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19106, USA
6Department of Neurosurgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Kaohsiung, Taiwan
7Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan

Received 23 December 2013; Accepted 21 January 2014; Published 2 March 2014

Academic Editor: John H. Zhang

Copyright © 2014 Dale Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Bederson, E. S. Connolly Jr., H. H. Batjer et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association,” Stroke, vol. 40, no. 3, pp. 994–1025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. W. Dorsch, “Cerebral arterial spasm—a clinical review,” British Journal of Neurosurgery, vol. 9, no. 3, pp. 403–412, 1995. View at Google Scholar · View at Scopus
  3. E. Tani, “Molecular mechanisms involved in development of cerebral vasospasm,” Neurosurgical Focus, vol. 12, no. 3, article ECP1, 2002. View at Google Scholar · View at Scopus
  4. R. L. Macdonald, “Pathophysiology and molecular genetics of vasospasm,” Acta Neurochirurgica Supplements, vol. 77, pp. 7–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Ogungbo, B. Gregson, A. Blackburn et al., “Aneurysmal subarachnoid hemorrhage in young adults,” Journal of Neurosurgery, vol. 98, no. 1, pp. 43–49, 2003. View at Google Scholar · View at Scopus
  6. T. Horiuchi, Y. Tanaka, K. Hongo, and S. Kobayashi, “Aneurysmal subarachnoid hemorrhage in young adults: a comparison between patients in the third and fourth decades of life,” Journal of Neurosurgery, vol. 99, no. 2, pp. 276–279, 2003. View at Google Scholar · View at Scopus
  7. F. Parazzini, “Determinants of age at menopause in women attending menopause clinics in Italy,” Maturitas, vol. 56, no. 3, pp. 280–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Ding, V. Toll, B. Ouyang, and M. Chen, “Younger age of menopause in women with cerebral aneurysms,” Journal of NeuroInterventional Surgery, vol. 5, no. 4, pp. 327–331, 2013. View at Publisher · View at Google Scholar
  9. A. Horowitz, C. B. Menice, R. Laporte, and K. G. Morgan, “Mechanisms of smooth muscle contraction,” Physiological Reviews, vol. 76, no. 4, pp. 967–1003, 1996. View at Google Scholar · View at Scopus
  10. L. Mascia, L. Fedorko, D. J. Stewart et al., “Temporal relationship between endothelin-1 concentrations and cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage,” Stroke, vol. 32, no. 5, pp. 1185–1190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. P. J. Goadsby, M. Adner, and L. Edvinsson, “Characterization of endothelin receptors in the cerebral vasculature and their lack of effect on spreading depression,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 4, pp. 698–704, 1996. View at Google Scholar · View at Scopus
  12. T. Miyauchi and T. Masaki, “Pathophysiology of endothelin in the cardiovascular system,” Annual Review of Physiology, vol. 61, pp. 391–415, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. R. M. Pluta, “Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment,” Pharmacology and Therapeutics, vol. 105, no. 1, pp. 23–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. G. Knowles and S. Moncada, “Nitric oxide synthases in mammals,” Biochemical Journal, vol. 298, part 2, no. 2, pp. 249–258, 1994. View at Google Scholar · View at Scopus
  15. J. Marín and M. A. Rodríguez-Martínez, “Role of vascular nitric oxide in physiological and pathological conditions,” Pharmacology & Therapeutics, vol. 75, no. 2, pp. 111–134, 1997. View at Publisher · View at Google Scholar
  16. R. M. Pluta, “Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH,” Acta Neurochirurgica, no. 104, pp. 139–147, 2008. View at Google Scholar · View at Scopus
  17. R. L. Macdonald and B. K. Weir, “Cerebral vasospasm and free radicalse,” Free Radical Biology and Medicine, vol. 16, no. 5, pp. 633–643, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. T. E. Link, K. Murakami, M. Beem-Miller, B. I. Tranmer, and G. C. Wellman, “Oxyhemoglobin-induced expression of R-type Ca2+ channels in cerebral arteries,” Stroke, vol. 39, no. 7, pp. 2122–2128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Handa, M. Kabuto, H. Kobayashi, H. Kawano, H. Takeuchi, and M. Hayashi, “The correlation between immunological reaction in the arterial wall and the time course of the development of cerebral vasospasm in a primate model,” Neurosurgery, vol. 28, no. 4, pp. 542–549, 1991. View at Google Scholar · View at Scopus
  20. R. Rothlein, M. L. Dustin, S. D. Marlin, and T. A. Springer, “A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1,” Journal of Immunology, vol. 137, no. 4, pp. 1270–1274, 1986. View at Google Scholar · View at Scopus
  21. A. K. Sills Jr., R. E. Clatterbuck, R. C. Thompson, P. L. Cohen, and R. J. Tamargo, “Endothelial cell expression of intercellular adhesion molecule 1 in experimental posthemorrhagic vasospasm,” Neurosurgery, vol. 41, no. 2, pp. 453–461, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Aihara, H. Kasuya, H. Onda, T. Hori, and J. Takeda, “Quantitative analysis of gene expressions related to inflammation in canine spastic artery after subarachnoid hemorrhage,” Stroke, vol. 32, no. 1, pp. 212–217, 2001. View at Google Scholar · View at Scopus
  23. R. S. Polin, M. Bavbek, M. E. Shaffrey et al., “Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 89, no. 4, pp. 559–567, 1998. View at Google Scholar · View at Scopus
  24. J. J. Nissen, D. Mantle, B. Gregson, and A. D. Mendelow, “Serum concentration of adhesion molecules in patients with delayed ischaemic neurological deficit after aneurysmal subarachnoid haemorrhage: the immunoglobulin and selectin superfamilies,” Journal of Neurology Neurosurgery and Psychiatry, vol. 71, no. 3, pp. 329–333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. G. S. Allen, H. S. Ahn, T. J. Preziosi et al., “Cerebral arterial spasm—a controlled trial of nimodipine in patients with subarachnoid hemorrhage,” The New England Journal of Medicine, vol. 308, no. 11, pp. 619–624, 1983. View at Publisher · View at Google Scholar
  26. J. D. Pickard, G. D. Murray, R. Illingworth et al., “Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial,” British Medical Journal, vol. 298, no. 6674, pp. 636–642, 1989. View at Google Scholar · View at Scopus
  27. F. G. Barker II and C. S. Ogilvy, “Efficacy of prophylactic nimodipine for delayed ischemic deficit after subarachnoid hemorrhage: a metaanalysis,” Journal of Neurosurgery, vol. 84, no. 3, pp. 405–414, 1996. View at Google Scholar · View at Scopus
  28. M. M. Kimball, G. J. Velat, and B. L. Hoh, “Critical care guidelines on the endovascular management of cerebral vasospasm,” Neurocritical Care, vol. 15, no. 2, pp. 336–341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A.-L. Kwan, C.-L. Lin, C.-S. Wu et al., “Delayed administration of the K+ channel activator cromakalin attenuates cerebral vasospasm after experimental subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 142, no. 2, pp. 193–197, 2000. View at Google Scholar · View at Scopus
  30. M. Koide, S. Nishizawa, S. Ohta, T. Yokoyama, and H. Namba, “Chronological changes of the contractile mechanism in prolonged vasospasm after subarachnoid hemorrhage: from protein kinase C to protein tyrosine kinase,” Neurosurgery, vol. 51, no. 6, pp. 1468–1476, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. S. Ali, R. M. Starke, P. M. Jabbour et al., “TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology,” Journal of Cerebral Blood Flow and Metabolism, vol. 33, no. 10, pp. 1564–1573, 2013. View at Publisher · View at Google Scholar
  32. H. Kim, E. Crago, M. Kim et al., “Cerebral vasospasm after sub-arachnoid hemorrhage as a clinical predictor and phenotype for genetic association study,” International Journal of Stroke, vol. 8, no. 8, pp. 620–625, 2013. View at Publisher · View at Google Scholar
  33. R. L. Macdonald, R. T. Higashida, E. Keller et al., “Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling,” Stroke, vol. 43, no. 6, pp. 1463–1469, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. R. L. Macdonald, R. T. Higashida, E. Keller et al., “Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2),” The Lancet Neurology, vol. 10, no. 7, pp. 618–625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. K. P. Budohoski, M. Czosnyka, P. J. Kirkpatrick, P. Smielewski, L. A. Steiner, and J. D. Pickard, “Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage,” Nature Reviews, vol. 9, no. 3, pp. 152–163, 2013. View at Publisher · View at Google Scholar
  36. R. L. Macdonald, R. M. Pluta, and J. H. Zhang, “Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution,” Nature Clinical Practice Neurology, vol. 3, no. 5, pp. 256–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. G. F. Prunell, N.-A. Svendgaard, K. Alkass, and T. Mathiesen, “Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain,” Journal of Neurosurgery, vol. 102, no. 6, pp. 1046–1054, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. R. P. Ostrowski, A. R. Colohan, and J. H. Zhang, “Molecular mechanisms of early brain injury after subarachnoid hemorrhage,” Neurological Research, vol. 28, no. 4, pp. 399–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Park, M. Yamaguchi, C. Zhou, J. W. Calvert, J. Tang, and J. H. Zhang, “Neurovascular protection reduces early brain injury after subarachnoid hemorrhage,” Stroke, vol. 35, no. 10, pp. 2412–2417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. F. A. Sehba and J. B. Bederson, “Mechanisms of acute brain injury after subarachnoid hemorrhage,” Neurological Research, vol. 28, no. 4, pp. 381–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Ohkuma, H. Manabe, M. Tanaka, and S. Suzuki, “Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage,” Stroke, vol. 31, no. 7, pp. 1621–1627, 2000. View at Google Scholar · View at Scopus
  42. K. W. Park, C. Metais, H. B. Dai, M. E. Comunale, and F. W. Sellke, “Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage,” Anesthesia and Analgesia, vol. 92, no. 4, pp. 990–996, 2001. View at Google Scholar · View at Scopus
  43. F. A. Sehba, G. Mostafa, V. Friedrich Jr., and J. B. Bederson, “Acute microvascular platelet aggregation after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 102, no. 6, pp. 1094–1100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. S. C. Stein, K. D. Browne, X.-H. Chen, D. H. Smith, and D. I. Graham, “Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: An Autopsy Study,” Neurosurgery, vol. 59, no. 4, pp. 781–788, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. P. Dreier, J. Woitzik, M. Fabricius et al., “Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations,” Brain, vol. 129, part 12, no. 12, pp. 3224–3237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. G. F. Prunell, N.-A. Svendgaard, K. Alkass, and T. Mathiesen, “Inflammation in the brain after experimental subarachnoid hemorrhage,” Neurosurgery, vol. 56, no. 5, pp. 1082–1092, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Borkowski, M. Dosogne, P. Declercq, C. Murquardt, and D. Machin, “Estrone to estradiol conversion by blood mononuclear cells in normal subjects and in patients with mammary and nonmammary carcinomas,” Cancer Research, vol. 38, no. 7, pp. 2174–2179, 1978. View at Google Scholar · View at Scopus
  48. M. Y. Farhat, M. C. Lavigne, and P. W. Ramwell, “The vascular protective effects of estrogen,” The FASEB Journal, vol. 10, no. 5, pp. 615–624, 1996. View at Google Scholar · View at Scopus
  49. B. L. Riggs and L. C. Hartmann, “Selective estrogen-receptor modulators—mechanisms of action and application to clinical practice,” The New England Journal of Medicine, vol. 348, no. 7, pp. 618–629, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. Chen, I. S. Yuhanna, Z. Galcheva-Gargova, R. H. Karas, M. E. Mendelsohn, and P. W. Shaul, “Estrogen receptor mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen,” Journal of Clinical Investigation, vol. 103, no. 3, pp. 401–406, 1999. View at Google Scholar · View at Scopus
  51. C.-L. Lin, H.-C. Shih, A. S. Dumont et al., “The effect of 17β-estradiol in attenuating experimental subarachnoid hemorrhage-induced cerebral vasospasm,” Journal of Neurosurgery, vol. 104, no. 2, pp. 298–304, 2006. View at Google Scholar · View at Scopus
  52. V. Zancan, S. Santagati, C. Bolego, E. Vegeto, A. Maggi, and L. Puglisi, “17β-estradiol decreases nitric oxide synthase II synthesis in vascular smooth muscle cells,” Endocrinology, vol. 140, no. 5, pp. 2004–2009, 1999. View at Google Scholar · View at Scopus
  53. H.-C. Shih, C.-L. Lin, T.-Y. Lee, W.-S. Lee, and C. Hsu, “17β-estradiol inhibits subarachnoid hemorrhage-induced inducible nitric oxide synthase gene expression by interfering with the nuclear factor κB transactivation,” Stroke, vol. 37, no. 12, pp. 3025–3031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. O. Lekontseva, Y. Jiang, and S. T. Davidge, “Estrogen replacement increases matrix metalloproteinase contribution to vasoconstriction in a rat model of menopause,” Journal of Hypertension, vol. 27, no. 8, pp. 1602–1608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. C.-L. Lin, A. S. Dumont, S.-C. Wu et al., “17β-estradiol inhibits endothelin-1 production and attenuates cerebral vasospasm after experimental subarachnoid hemorrhage,” Experimental Biology and Medicine, vol. 231, no. 6, pp. 1054–1057, 2006. View at Google Scholar · View at Scopus
  56. M. Fiocchetti, P. Ascenzi, and M. Marino, “Neuroprotective effects of 17β-estradiol rely on estrogen receptor membrane initiated signals,” Frontiers in Physiology, vol. 3, article 73, 2012. View at Publisher · View at Google Scholar
  57. D. Amantea, R. Russo, G. Bagetta, and M. T. Corasaniti, “From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens,” Pharmacological Research, vol. 52, no. 2, pp. 119–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Culmsee, H. Vedder, A. Ravati et al., “Neuroprotection by estrogens in a mouse model of focal cerebral ischemia and in cultured neurons: evidence for a receptor-independent antioxidative mechanism,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 11, pp. 1263–1269, 1999. View at Google Scholar · View at Scopus
  59. S. Y. Lee, T. Andoh, D. L. Murphy, and C. C. Chiueh, “17β-estradiol activates ICI 182,780-sensitive estrogen receptors and cyclic GMP-dependent thioredoxin expression for neuroprotection,” The FASEB Journal, vol. 17, no. 8, pp. 947–948, 2003. View at Google Scholar · View at Scopus
  60. S. Srivastava, M. N. Weitzmann, S. Cenci, F. P. Ross, S. Adler, and R. Pacifici, “Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD,” Journal of Clinical Investigation, vol. 104, no. 4, pp. 503–513, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Xing, W. Feng, A. P. Miller et al., “Estrogen modulates TNF-α-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-β activation,” American Journal of Physiology, vol. 292, no. 6, pp. H2607–H2612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Burmester, B. Welch, S. Reinhardt, and T. Hankeln, “A verteblrate globin expressed in the brain,” Nature, vol. 407, no. 6803, pp. 520–523, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. E. de Marinis, P. Ascenzi, M. Pellegrini et al., “17β-estradiol—a new modulator of neuroglobin levels in neurons: role in neuroprotection against H2O2-induced toxicity,” NeuroSignals, vol. 18, no. 4, pp. 223–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. K. B. Hota, S. K. Hota, R. B. Srivastava, and S. B. Singh, “Neuroglobin regulates hypoxic response of neuronal cells through Hif-1α- and Nrf2-mediated mechanism,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 6, pp. 1046–1060, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. C. H. Kao, C. Z. Chang, Y. F. Su et al., “17β-Estradiol attenuates secondary injury through activation of Akt signaling via estrogen receptor alpha in rat brain following subarachnoid hemorrhage,” Journal of Surgical Research, vol. 183, no. 1, pp. e23–e30, 2013. View at Publisher · View at Google Scholar
  66. N. Hay and N. Sonenberg, “Upstream and downstream of mTOR,” Genes and Development, vol. 18, no. 16, pp. 1926–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. D. A. Cross, D. R. Alessi, P. Cohen, M. Andjelkovich, and B. A. Hemmings, “Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B,” Nature, vol. 378, no. 6559, pp. 785–789, 1995. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Cheng, W. Chunlei, W. Pei, L. Zhen, and L. Xiangzhen, “Simvastatin activates Akt/glycogen synthase kinase-3β signal and inhibits caspase-3 activation after experimental subarachnoid hemorrhage,” Vascular Pharmacology, vol. 52, no. 1-2, pp. 77–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Endo, C. Nito, H. Kamada, F. Yu, and P. H. Chan, “Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3β survival signaling,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 5, pp. 975–982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. C.-L. Lin, A. S. Dumont, Y.-J. Tsai et al., “17β-estradiol activates adenosine A2a receptor after subarachnoid hemorrhage,” Journal of Surgical Research, vol. 157, no. 2, pp. 208–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Ito, H. Utsunomiya, H. Niikura, N. Yaegashi, and H. Sasano, “Inhibition of estrogen actions in human gynecological malignancies: new aspects of endocrine therapy for endometrial cancer and ovarian cancer,” Molecular and Cellular Endocrinology, vol. 340, no. 2, pp. 161–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Artero, J. J. Tarín, and A. Cano, “The adverse effects of estrogen and selective estrogen receptor modulators on hemostasis and thrombosis,” Seminars in Thrombosis and Hemostasis, vol. 38, no. 8, pp. 797–807, 2012. View at Publisher · View at Google Scholar
  73. C. Main, B. Knight, T. Moxham et al., “Hormone therapy for preventing cardiovascular disease in post-menopausal women,” The Cochrane Database of Systematic Reviews, vol. 4, Article ID CD002229, 2013. View at Publisher · View at Google Scholar