Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 741018, 20 pages
http://dx.doi.org/10.1155/2014/741018
Review Article

Side Effects of Radiographic Contrast Media: Pathogenesis, Risk Factors, and Prevention

1Nephrology Unit, Department of “Health Sciences”, Campus “Salvatore Venuta”, “Magna Graecia” University, Loc. Germaneto, 88100 Catanzaro, Italy
2University of Vermont College of Medicine, Fletcher Allen Health Care, Burlington, VT, USA
3Nephrology Unit, Department of Medicine, Faculty of Medicine, Thammasat University, Rangsit Campus, Khlong Luang, Pathum Thani 12121, Thailand

Received 7 January 2014; Accepted 3 March 2014; Published 11 May 2014

Academic Editor: Vickram Ramkumar

Copyright © 2014 Michele Andreucci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. B. Lightfoot, R. J. Abraham, T. Mammen, M. Abdolell, S. Kapur, and R. J. Abraham, “Survey of radiologists' knowledge regarding the management of severe contrast material-induced allergic reactions,” Radiology, vol. 251, no. 3, pp. 691–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Singh and A. Daftary, “Iodinated contrast media and their adverse reactions,” Journal of Nuclear Medicine Technology, vol. 36, no. 2, pp. 69–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. R. Thomson and D. K. Varma, “Safe use of radiographic contrast media,” Australian Prescriber, vol. 33, no. 1, pp. 19–22, 2010. View at Google Scholar · View at Scopus
  4. S. Loh, S. Bagheri, R. W. Katzberg, M. A. Fung, and C. Li, “Delayed adverse reaction to contrast-enhanced CT: a prospective single-center study comparison to control group without enhancement,” Radiology, vol. 255, no. 3, pp. 764–771, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. H. Schild, C. K. Kuhl, U. Hübner-Steiner, I. Böhm, and U. Speck, “Adverse events after unenhanced and monomeric and dimeric contrast-enhanced CT: a prospective randomized controlled trial,” Radiology, vol. 240, no. 1, pp. 56–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. G. C. Sutton, P. Finn, E. D. Grech et al., “Early and late reactions after the use of iopamidol 340, ioxaglate 320, and iodixanol 320 in cardiac catheterization,” American Heart Journal, vol. 141, no. 4, pp. 677–683, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. G. C. Sutton, P. Finn, P. G. Campbell et al., “Early and late reactions following the use of iopamidol 340, iomeprol 350 and iodixanol 320 in cardiac catheterization,” Journal of Invasive Cardiology, vol. 15, no. 3, pp. 133–138, 2003. View at Google Scholar · View at Scopus
  8. M. M. Sendeski, “Pathophysiology of renal tissue damage by iodinated contrast media,” Clinical and Experimental Pharmacology and Physiology, vol. 38, no. 5, pp. 292–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. van der Molen, H. S. Thomsen, S. K. Morcos et al., “Effect of iodinated contrast media on thyroid function in adults,” European Radiology, vol. 14, no. 5, pp. 902–907, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. W. Katzberg and C. Haller, “Contrast-induced nephrotoxicity: clinical landscape,” Kidney International. Supplement, vol. 69, pp. S3–S7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. S. Moisey, S. McPherson, M. Wright, and S. M. Orme, “Thyroiditis and iodide mumps following an angioplasty,” Nephrology Dialysis Transplantation, vol. 22, no. 4, pp. 1250–1252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Trumbo, A. A. Yates, S. Schlicker, and M. Poos, “Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc,” Journal of the American Dietetic Association, vol. 101, no. 3, pp. 294–301, 2001. View at Google Scholar · View at Scopus
  13. A. M. Leung and L. E. Braverman, “Iodine-induced thyroid dysfunction,” Current Opinion in Endocrinology, Diabetes, and Obesity, vol. 19, pp. 414–419, 2012. View at Google Scholar
  14. P. H. K. Eng, G. R. Cardona, S. Fang et al., “Escape from the acute Wolff-Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein,” Endocrinology, vol. 140, no. 8, pp. 3404–3410, 1999. View at Google Scholar · View at Scopus
  15. M. C. Martins, N. Lima, M. Knobel, and G. Medeiros-Neto, “Natural course of iodine-induced thyrotoxicosis (Jodbasedow) in endemic goiter area: a 5 year follow-up,” Journal of Endocrinological Investigation, vol. 12, no. 4, pp. 239–244, 1989. View at Google Scholar · View at Scopus
  16. H. Bürgi, “Iodine excess,” Best Practice and Research: Clinical Endocrinology and Metabolism, vol. 24, no. 1, pp. 107–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Rhee, I. Bhan, E. K. Alexander, and S. M. Brunelli, “Association between iodinated contrast media exposure and incident hyperthyroidism and hypothyroidism,” Archives of Internal Medicine, vol. 172, no. 2, pp. 153–159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. F. I. R. Martin, B. W. Tress, P. G. Colman, and D. R. Deam, “Iodine-induced hyperthyroidism due to nonionic contrast radiography in the elderly,” American Journal of Medicine, vol. 95, no. 1, pp. 78–82, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Conn, M. J. Sebastian, D. Deam, M. Tam, and F. I. R. Martin, “A prospective study of the effect of nonionic contrast media on thyroid function,” Thyroid, vol. 6, no. 2, pp. 107–110, 1996. View at Google Scholar · View at Scopus
  20. G. Hintze, O. Blombach, H. Fink, U. Burkhardt, and J. Köbberling, “Risk of iodine-induced thyrotoxicosis after coronary angiography: an investigation in 788 unselected subjects,” European Journal of Endocrinology, vol. 140, no. 3, pp. 264–267, 1999. View at Google Scholar · View at Scopus
  21. W. Gartner and M. Weissel, “Do iodine-containing contrast media induce clinically relevant changes in thyroid function parameters of euthyroid patients within the first week?” Thyroid, vol. 14, no. 7, pp. 521–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Panzer, R. Beazley, and L. Braverman, “Rapid preoperative preparation for severe hyperthyroid Graves' disease,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 5, pp. 2142–2144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. T. G. Gleeson and S. Bulugahapitiya, “Contrast-induced nephropathy,” American Journal of Roentgenology, vol. 183, no. 6, pp. 1673–1689, 2004. View at Google Scholar · View at Scopus
  24. L. M. Curtis and A. Agarwal, “HOpe for contrast-induced acute kidney injury,” Kidney International, vol. 72, no. 8, pp. 907–909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Solomon, “Contrast-induced acute kidney injury: is there a risk after intravenous contrast?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 5, pp. 1242–1243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. W. Katzberg and J. H. Newhouse, “Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe?” Radiology, vol. 256, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. S. Thomsen and S. K. Morcos, “Contrast media and the kidney: European Society of Urogenital Radiology (ESUR) guidelines,” British Journal of Radiology, vol. 76, no. 908, pp. 513–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Mehran and E. Nikolsky, “Contrast-induced nephropathy: definition, epidemiology, and patients at risk,” Kidney International. Supplement, no. 100, pp. S11–S15, 2006. View at Google Scholar · View at Scopus
  29. J. H. Newhouse, D. Kho, Q. A. Rao, and J. Starren, “Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity,” American Journal of Roentgenology, vol. 191, no. 2, pp. 376–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, “A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation,” Annals of Internal Medicine, vol. 130, no. 6, pp. 461–470, 1999. View at Google Scholar · View at Scopus
  31. D. W. Cockcroft and M. H. Gault, “Prediction of creatinine clearance from serum creatinine,” Nephron, vol. 16, no. 1, pp. 31–41, 1976. View at Google Scholar · View at Scopus
  32. P. J. Scanlon, D. P. Faxon, A. M. Audet et al., “ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions,” Journal of the American College of Cardiology, vol. 33, pp. 1756–1824, 1999. View at Google Scholar
  33. P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” American Journal of Medicine, vol. 103, no. 5, pp. 368–375, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Mitchell, A. E. Jones, J. A. Tumlin, and J. A. Kline:, “Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting,” Clinical Journal of the American Society of Nephrology, vol. 5, pp. 4–9, 2010. View at Google Scholar
  35. S. D. Weisbord, M. K. Mor, A. L. Resnick, K. C. Hartwig, P. M. Palevsky, and M. J. Fine, “Incidence and outcomes of contrast-induced AKI following computed tomography,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 5, pp. 1274–1281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. J. Bruce, A. Djamali, K. Shinki, S. J. Michel, J. P. Fine, and M. A. Pozniak, “Background fluctuation of kidney function versus contrast-induced nephrotoxicity,” American Journal of Roentgenology, vol. 192, no. 3, pp. 711–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. S. Davenport, S. Khalatbari, R. H. Cohan, J. R. Dillman, J. D. Myles, and J. H. Ellis, “Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate,” Radiology, vol. 268, pp. 719–728, 2013. View at Google Scholar
  38. M. S. Davenport, S. Khalatbari, J. R. Dillman, R. H. Cohan, E. M. Caoili, and J. H. Ellis, “Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material,” Radiology, vol. 267, pp. 94–105, 2013. View at Google Scholar
  39. R. J. McDonald, J. S. McDonald, J. P. Bida et al., “Intravenous contrast material-induced nephropathy: causal or coincident phenomenon?” Radiology, vol. 267, pp. 106–118, 2013. View at Google Scholar
  40. J. S. McDonald, R. J. McDonald, J. Comin et al., “Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis,” Radiology, vol. 267, pp. 119–128, 2013. View at Google Scholar
  41. M. Rudnick and H. Feldman, “Contrast-induced nephropathy: what are the true clinical consequences?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 263–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Lakhal, S. Ehrmann, A. Chaari et al., “Acute Kidney Injury Network definition of contrast-induced nephropathy in the critically ill: incidence and outcome,” Journal of Critical Care, vol. 26, no. 6, pp. 593–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. R. J. Solomon, R. Mehran, M. K. Natarajan et al., “Contrast-induced nephropathy and long-term adverse events: cause and effect?” Clinical Journal of the American Society of Nephrology, vol. 4, no. 7, pp. 1162–1169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. J. Giaccia, M. C. Simon, and R. Johnson, “The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease,” Genes and Development, vol. 18, no. 18, pp. 2183–2194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. S. N. Heyman, S. Rosen, M. Khamaisi, J. Idée, and C. Rosenberger, “Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy,” Investigative Radiology, vol. 45, no. 4, pp. 188–195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Dawson, M. J. G. Harrison, and E. Weisblatt, “Effect of contrast media on red cell filtrability and morphology,” British Journal of Radiology, vol. 56, no. 670, pp. 707–710, 1983. View at Google Scholar · View at Scopus
  47. S. W. Murphy, B. J. Barrett, and P. S. Parfrey, “Contrast nephropathy,” Journal of the American Society of Nephrology, vol. 11, no. 1, pp. 177–182, 2000. View at Google Scholar · View at Scopus
  48. S. Detrenis, M. Meschi, S. Musini, and G. Savazzi, “Lights and shadows on the pathogenesis of contrast-induced nephropathy: state of the art,” Nephrology Dialysis Transplantation, vol. 20, no. 8, pp. 1542–1550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Fishbane, “N-acetylcysteine in the prevention of contrast-induced nephropathy,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 281–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Sendeski, A. Patzak, T. L. Pallone, C. Cao, A. E. Persson, and P. B. Persson, “Iodixanol, constriction of medullary descending vasa recta, and risk for contrast medium-induced nephropathy,” Radiology, vol. 251, no. 3, pp. 697–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Pacher, J. S. Beckman, and L. Liaudet, “Nitric oxide and peroxynitrite in health and disease,” Physiological Reviews, vol. 87, no. 1, pp. 315–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis,” Journal of Vascular Surgery, vol. 44, no. 2, pp. 383–391, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Pisani, M. Sabbatini, E. Riccio et al., “Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury,” Clinical and Experimental Nephrology, 2013. View at Publisher · View at Google Scholar
  54. S. N. Heyman, S. Rosen, and C. Rosenberger, “Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 288–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Hardiek, R. E. Katholi, V. Ramkumar, and C. Deitrick, “Proximal tubule cell response to radiographic contrast media,” The American Journal of Physiology—Renal Physiology, vol. 280, no. 1, pp. F61–F70, 2001. View at Google Scholar · View at Scopus
  56. M. C. Heinrich, M. K. Kuhlmann, A. Grgic, M. Heckmann, B. Kramann, and M. Uder, “Cytotoxic effects of ionic high-osmolar, nonionic monomeric, and nonionic iso-osmolar dimeric iodinated contrast media on renal tubular cells in vitro,” Radiology, vol. 235, no. 3, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Andreucci, G. Lucisano, T. Faga et al., “Differential activation of signaling pathways involved in cell death, survival and inflammation by radiocontrast media in human renal proximal tubular cells,” Toxicological Sciences, vol. 119, no. 2, pp. 408–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Andreucci, G. Fuiano, P. Presta et al., “Radiocontrast media cause dephosphorylation of Akt and downstream signaling targets in human renal proximal tubular cells,” Biochemical Pharmacology, vol. 72, no. 10, pp. 1334–1342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Andreucci, T. Faga, D. Russo et al., “Differential activation of signaling pathways by low-osmolar and iso-osmolar radiocontrast agents in human renal tubular cells,” Journal of Cellular Biochemistry, vol. 115, pp. 281–289, 2014. View at Google Scholar
  60. A. Michael, T. Faga, A. Pisani et al., “Molecular mechanisms of renal cellular nephrotoxicity due to radiocontrast media,” in Side Effects of Radiographic Contrast, Media, M. Andreucci, R. Solomon, and A. Tasanarong, Eds., Special Issue, BioMed Research International, 2014. View at Google Scholar
  61. M. Andreucci, T. Faga, G. Lucisano et al., “Mycophenolic acid inhibits the phosphorylation of NF-κB and JNKs and causes a decrease in IL-8 release in H2O2-treated human renal proximal tubular cells,” Chemico-Biological Interactions, vol. 185, no. 3, pp. 253–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. P. B. Persson, P. Hansell, and P. Liss, “Pathophysiology of contrast medium-induced nephropathy,” Kidney International, vol. 68, no. 1, pp. 14–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. M. A. Cunha and N. Schor, “Effects of gentamicin, lipopolysaccharide, and contrast media on immortalized proximal tubular cells,” Renal Failure, vol. 24, no. 5, pp. 655–658, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Peer, Z. Averbukh, S. Berman, D. Modai, M. Averbukh, and J. Weissgarten, “Contrast media augmented apoptosis of cultured renal mesangial, tubular, epithelial, endothelial, and hepatic cells,” Investigative Radiology, vol. 38, no. 3, pp. 177–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Haller and I. Hizoh, “The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro,” Investigative Radiology, vol. 39, no. 3, pp. 149–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. P. A. McCullough, “Acute kidney injury with iodinated contrast,” Critical Care Medicine, vol. 36, pp. S204–S211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. S. D. Weisbord, “Iodinated contrast media and the kidney,” Reviews in Cardiovascular Medicine, vol. 9, supplement 1, pp. S14–S23, 2008. View at Google Scholar · View at Scopus
  68. M. Osthoff, V. Piezzi, T. Klima et al., “Impact of mannose-binding lectin deficiency on radiocontrast-induced renal dysfunction: a post-hoc analysis of a multicenter randomized controlled trial,” BMC Nephrology, vol. 13, article 99, 2012. View at Google Scholar
  69. V. R. Dharnidharka, C. Kwon, and G. Stevens, “Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis,” American Journal of Kidney Diseases, vol. 40, no. 2, pp. 221–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Herget-Rosenthal, G. Marggraf, J. Hüsing et al., “Early detection of acute renal failure by serum cystatin C,” Kidney International, vol. 66, no. 3, pp. 1115–1122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Rickli, K. Benou, P. Ammann et al., “Time course of serial cystatin C levels in comparison with serum creatinine after application of radiocontrast media,” Clinical Nephrology, vol. 61, no. 2, pp. 98–102, 2004. View at Google Scholar · View at Scopus
  72. M. Kimmel, M. Butscheid, S. Brenner, U. Kuhlmann, U. Klotz, and D. M. Alscher, “Improved estimation of glomerular filtration rate by serum cystatin C in preventing contrast induced nephropathy by N-acetylcysteine or zinc—preliminary results,” Nephrology Dialysis Transplantation, vol. 23, no. 4, pp. 1241–1245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. S. K. Morcos, H. S. Thomsen, and J. A. W. Webb, “Contrast-media-induced nephrotoxicity: a consensus report,” European Radiology, vol. 9, no. 8, pp. 1602–1613, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. J. A. Neyra, S. Shah, R. Mooney, G. Jacobsen, J. Yee, and J. E. Novak, “Contrast-induced acute kidney injury following coronary angiography: a cohort study of hospitalized patients with or without chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 28, pp. 1463–1471, 2013. View at Google Scholar
  75. K. J. Hardiek, R. E. Katholi, R. S. Robbs, and C. E. Katholi, “Renal effects of contrast media in diabetic patients undergoing diagnostic or interventional coronary angiography,” Journal of Diabetes and its Complications, vol. 22, no. 3, pp. 171–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Khamaisi, I. Raz, V. Shilo et al., “Diabetes and radiocontrast media increase endothelin converting enzyme-1 in the kidney,” Kidney International, vol. 74, no. 1, pp. 91–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Pflueger, T. S. Larson, K. A. Nath, B. F. King, J. M. Gross, and F. G. Knox, “Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus,” Mayo Clinic Proceedings, vol. 75, no. 12, pp. 1275–1283, 2000. View at Google Scholar · View at Scopus
  78. M. Pakfetrat, M. H. Nikoo, L. Malekmakan et al., “Comparison of risk factors for contrast-induced acute kidney injury between patients with and without diabetes,” Hemodialysis International, vol. 14, no. 4, pp. 387–392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Morabito, V. Pistolesi, G. Benedetti et al., “Incidence of contrast-induced acute kidney injury associated with diagnostic or interventional coronary angiography,” Journal of Nephrology, vol. 25, pp. 1098–1107, 2012. View at Google Scholar
  80. M. R. Rudnick, S. Goldfarb, and J. Tumlin, “Contrast-induced nephropathy: is the picture any clearer?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 261–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. C. L. Manske, J. M. Sprafka, J. T. Strony, and Y. Wang, “Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography,” American Journal of Medicine, vol. 89, no. 5, pp. 615–620, 1990. View at Publisher · View at Google Scholar · View at Scopus
  82. S. K. Morcos, “Contrast media-induced nephrotoxicity—questions and answers,” British Journal of Radiology, vol. 71, pp. 357–365, 1998. View at Google Scholar · View at Scopus
  83. A. Kolonko, F. Kokot, and A. Wiȩcek, “Contrast-associated nephropathy—old clinical problem and new therapeutic perspectives,” Nephrology Dialysis Transplantation, vol. 13, no. 3, pp. 803–806, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. O. Toprak, “Conflicting and new risk factors for contrast induced nephropathy,” The Journal of Urology, vol. 178, no. 6, pp. 2277–2283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. A. C. Schoolwerth, D. A. Sica, B. J. Ballermann, and C. S. Wilcox, “Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the council on the kidney in cardiovascular disease and the council for high blood pressure research of the american heart association,” Circulation, vol. 104, no. 16, pp. 1985–1991, 2001. View at Google Scholar · View at Scopus
  86. M. Cirit, O. Toprak, M. Yesil et al., “Angiotensin-converting enzyme inhibitors as a risk factor for contrast-induced nephropathy,” Nephron—Clinical Practice, vol. 104, no. 1, pp. c20–c27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Kiski, W. Stepper, E. Brand, G. Breithardt, and H. Reinecke, “Impact of renin-angiotensin-aldosterone blockade by angiotensin-converting enzyme inhibitors or AT-1 blockers on frequency of contrast medium-induced nephropathy: a post-hoc analysis from the Dialysis-versus-Diuresis (DVD) trial,” Nephrology Dialysis Transplantation, vol. 25, no. 3, pp. 759–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Y. Rim, H. Ro, W. C. Kang et al., “The effect of renin-angiotensin-aldosterone system blockade on contrast-induced acute kidney injury: a propensity-matched study,” American Journal of Kidney Diseases, vol. 60, pp. 576–582, 2012. View at Google Scholar
  89. Z. Umruddin, K. Moe, and K. Superdock, “ACE inhibitor or angiotensin II receptor blocker use is a risk factor for contrast-induced nephropathy,” Journal of Nephrology, vol. 25, pp. 776–781, 2012. View at Google Scholar
  90. M. A. C. Onuigbo and N. T. C. Onuigbo, “Does renin-angiotensin aldosterone system blockade exacerbate contrast-induced nephropathy in patients with chronic kidney disease? A prospective 50-month mayo clinic study,” Renal Failure, vol. 30, no. 1, pp. 67–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. R. K. Gupta, A. Kapoor, S. Tewari, N. Sinha, and R. K. Sharma, “Captopril for prevention of contrast-induced nephropathy in diabetic patients: a randomised study,” Indian Heart Journal, vol. 51, no. 5, pp. 521–526, 1999. View at Google Scholar · View at Scopus
  92. S. B. Duan, Y. H. Wang, F. Y. Liu et al., “The protective role of telmisartan against nephrotoxicity induced by x-ray contrast media in rat model,” Acta Radiologica, vol. 50, no. 7, pp. 754–759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. L. Rosenstock, R. Bruno, J. K. Kim et al., “The effect of withdrawal of ACE inhibitors or angiotensin receptor blockers prior to coronary angiography on the incidence of contrast-induced nephropathy,” International Urology and Nephrology, vol. 40, no. 3, pp. 749–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. K. D. I. G.O.K.A.K.I.W. Group, “KDIGO clinical practice guideline for acute kidney injury,” Kidney Interantional, vol. 2, pp. 1–138, 2012. View at Google Scholar
  95. B. J. Barrett and P. S. Parfrey, “Prevention of nephrotoxicity induced by radiocontrast agents,” The New England Journal of Medicine, vol. 331, no. 21, pp. 1449–1450, 1994. View at Publisher · View at Google Scholar · View at Scopus
  96. E. D. Bartels, G. C. Brun, A. Gammeltoft, and P. A. Gjorup, “Acute anuria following intravenous pyelography in a patient with myelomatosis,” Acta Medica Scandinavica, vol. 150, pp. 297–302, 1954. View at Google Scholar
  97. P. E. Perillie and H. O. Conn, “Acute renal failure after intravenous pyelography in plasma cell myeloma,” Journal of the American Medical Association, vol. 167, pp. 2186–2189, 1958. View at Google Scholar
  98. W. Scheitlin, G. Martz, and U. Brunner, “Acute renal failure following intravenous pyelography in multiple myeloma,” Schweizerische Medizinische Wochenschrift, vol. 90, pp. 84–87, 1960. View at Google Scholar · View at Scopus
  99. G. H. Myers Jr. and D. M. Witten, “Acute renal failure after excretory urography in multiple myeloma,” The American Journal of Roentgenology, Radium Therapy, and Nuclear Medicine, vol. 113, no. 3, pp. 583–588, 1971. View at Google Scholar · View at Scopus
  100. D. J. Cohen, W. H. Sherman, E. F. Osserman, and G. B. Appel, “Acute renal failure in patients with multiple myeloma,” American Journal of Medicine, vol. 76, no. 2, pp. 247–256, 1984. View at Google Scholar · View at Scopus
  101. C. S. McCarthy and J. A. Becker, “Multiple myeloma and contrast media,” Radiology, vol. 183, no. 2, pp. 519–521, 1992. View at Google Scholar · View at Scopus
  102. J. K. Pahade, C. A. LeBedis, V. D. Raptopoulos et al., “Incidence of contrast-induced nephropathy in patients with multiple myeloma undergoing contrast-enhanced CT,” American Journal of Roentgenology, vol. 196, no. 5, pp. 1094–1101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. A. B. Dawnay, C. Thornley, I. Nockler, J. A. Webb, and W. R. Cattel, “Tamm-Horsfall glycoprotein excretion and aggregation during intravenous urography: relevance to acute renal failure,” Investigative Radiology, vol. 20, no. 1, pp. 53–57, 1985. View at Google Scholar · View at Scopus
  104. S. T. Cochran, W. S. Wong, and D. J. Roe, “Predicting angiography-induced acute renal function impairment: clinical risk model,” American Journal of Roentgenology, vol. 141, no. 5, pp. 1027–1033, 1983. View at Google Scholar · View at Scopus
  105. D. B. G. Oliveira, “Prophylaxis against contrast-induced nephropathy,” The Lancet, vol. 353, no. 9165, pp. 1638–1639, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. C. P. Taliercio, R. E. Vlietstra, L. D. Fisher, and J. C. Burnett, “Risks for renal dysfunction with cardiac angiography,” Annals of Internal Medicine, vol. 104, no. 4, pp. 501–504, 1986. View at Google Scholar · View at Scopus
  107. P. McCullough, “Outcomes of contrast-induced nephropathy: experience in patients undergoing cardiovascular intervention,” Catheterization and Cardiovascular Interventions, vol. 67, no. 3, pp. 335–343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Kato, N. Sato, T. Yamamoto, Y. Iwasaki, K. Tanaka, and K. Mizuno, “Valuable markers for contrast-induced nephropathy in patients undergoing cardiac catheterization,” Circulation Journal, vol. 72, no. 9, pp. 1499–1505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Nunag, M. Brogan, and R. Garrick, “Mitigating contrast-induced acute kidney injury associated with cardiac catheterization,” Cardiology in Review, vol. 17, no. 6, pp. 263–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. L. Byrd and R. L. Sherman, “Radiocontrast-induced acute renal failure: a clinical and pathophysiologic review,” Medicine, vol. 58, no. 3, pp. 270–279, 1979. View at Google Scholar · View at Scopus
  111. S. Harkonen and C. Kjellstrand, “Contrast nephropathy,” American Journal of Nephrology, vol. 1, no. 2, pp. 69–77, 1981. View at Google Scholar · View at Scopus
  112. G. A. Khoury, J. C. Hopper, Z. Varghese et al., “Nephrotoxicity of ionic and non-ionic contrast material in digital vascular imaging and selective renal arteriography,” British Journal of Radiology, vol. 56, no. 669, pp. 631–635, 1983. View at Google Scholar · View at Scopus
  113. R. D. Moore, E. P. Steinberg, N. R. Powe et al., “Nephrotoxicity of high-osmolality versus low-osmolality contrast media: randomized clinical trial,” Radiology, vol. 182, no. 3, pp. 649–655, 1992. View at Google Scholar · View at Scopus
  114. R. W. Katzberg and B. J. Barrett, “Risk of iodinated contrast material-induced nephropathy with intravenous administration,” Radiology, vol. 243, no. 3, pp. 622–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Dong, Z. Jiao, T. Liu, F. Guo, and G. Li, “Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controlled trials,” Journal of Nephrology, vol. 25, pp. 290–301, 2012. View at Google Scholar
  116. D. R. Campbell, B. K. Flemming, W. F. Mason, S. A. Jackson, D. J. Hirsch, and K. J. MacDonald, “A comparative study of the nephrotoxicity of iohexol, iopamidol and ioxaglate in peripheral angiography,” Canadian Association of Radiologists Journal, vol. 41, no. 3, pp. 133–137, 1990. View at Google Scholar · View at Scopus
  117. A. S. Gomes, J. D. Baker, V. Martin-Paredero et al., “Acute renal dysfunction after major arteriography,” American Journal of Roentgenology, vol. 145, no. 6, pp. 1249–1253, 1985. View at Google Scholar · View at Scopus
  118. P. Aspelin, P. Aubry, S. Fransson, R. Strasser, R. Willenbrock, and K. J. Berg, “Nephrotoxic effects in high-risk patients undergoing angiography,” The New England Journal of Medicine, vol. 348, no. 6, pp. 491–499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. R. W. Katzberg, “Urography into the 21st century: new contrast media, renal handling, imaging characteristics, and nephrotoxicity,” Radiology, vol. 204, no. 2, pp. 297–312, 1997. View at Google Scholar · View at Scopus
  120. C. P. Taliercio, R. E. Vlietstra, D. M. Ilstrup et al., “A randomized comparison of the nephrotoxicity of iopamidol and diatrizoate in high risk patients undergoing cardiac angiography,” Journal of the American College of Cardiology, vol. 17, no. 2, pp. 384–390, 1991. View at Google Scholar · View at Scopus
  121. B. J. Barrett and E. J. Carlisle, “Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media,” Radiology, vol. 188, no. 1, pp. 171–178, 1993. View at Google Scholar · View at Scopus
  122. B. J. Barrett, “Contrast nephrotoxicity,” Journal of the American Society of Nephrology, vol. 5, no. 2, pp. 125–137, 1994. View at Google Scholar · View at Scopus
  123. N. Chalmers and R. W. Jackson, “Comparison of iodixanol and iohexol in renal impairment,” British Journal of Radiology, vol. 72, pp. 701–703, 1999. View at Google Scholar · View at Scopus
  124. M. C. Heinrich, L. Häberle, V. Müller, W. Bautz, and M. Uder, “Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials,” Radiology, vol. 250, no. 1, pp. 68–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. R. J. Solomon, M. K. Natarajan, S. Doucet et al., “Cardiac angiography in renally impaired patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease,” Circulation, vol. 115, no. 25, pp. 3189–3196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Reed, P. Meier, U. U. Tamhane, K. B. Welch, M. Moscucci, and H. S. Gurm, “The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials,” JACC: Cardiovascular Interventions, vol. 2, no. 7, pp. 645–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. L. Bolognese, G. Falsini, C. Schwenke et al., “Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] trial),” The American Journal of Cardiology, vol. 109, no. 1, pp. 67–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  128. E. Nikolsky, R. Mehran, Z. Lasic et al., “Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions,” Kidney International, vol. 67, no. 2, pp. 706–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. T. S. Ahuja, N. Niaz, and M. Agraharkar, “Contrast-induced nephrotoxicity in renal allograft recipients,” Clinical Nephrology, vol. 54, no. 1, pp. 11–14, 2000. View at Google Scholar · View at Scopus
  130. C. Mueller, “Prevention of contrast-induced nephropathy with volume supplementation,” Kidney International. Supplement, no. 100, pp. S16–S19, 2006. View at Google Scholar · View at Scopus
  131. J. H. Ellis and R. H. Cohan, “Prevention of contrast-induced nephropathy: an overview,” Radiologic Clinics of North America, vol. 47, no. 5, pp. 801–811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. R. Solomon and H. L. Dauerman, “Contrast-induced acute kidney injury,” Circulation, vol. 122, no. 23, pp. 2451–2455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. C. E. Balemans, L. J. Reichert, B. I. van Schelven, J. A. van den Brand, and J. F. Wetzels, “Epidemiology of contrast material-induced nephropathy in the era of hydration,” Radiology, vol. 263, pp. 706–713, 2012. View at Google Scholar
  134. H. S. Thomsen, “Guidelines for contrast media from the European Society of Urogenital Radiology,” American Journal of Roentgenology, vol. 181, no. 6, pp. 1463–1471, 2003. View at Google Scholar · View at Scopus
  135. R. Solomon, C. Werner, D. Mann, J. D'Elia, and P. Silva, “Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents,” The New England Journal of Medicine, vol. 331, no. 21, pp. 1416–1420, 1994. View at Publisher · View at Google Scholar · View at Scopus
  136. G. J. Merten, W. P. Burgess, L. V. Gray et al., “Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial,” Journal of the American Medical Association, vol. 291, no. 19, pp. 2328–2334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Masuda, T. Yamada, T. Mine et al., “Comparison of usefulness of sodium bicarbonate versus sodium chloride to prevent contrast-induced nephropathy in patients undergoing an emergent coronary procedure,” The American Journal of Cardiology, vol. 100, no. 5, pp. 781–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. E. E. Ozcan, S. Guneri, B. Akdeniz et al., “Sodium bicarbonate, N-acetylcysteine, and saline for prevention of radiocontrast-induced nephropathy. A comparison of 3 regimens for protecting contrast-induced nephropathy in patients undergoing coronary procedures. A single-center prospective controlled trial,” American Heart Journal, vol. 154, no. 3, pp. 539–544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  139. A. Tamura, Y. Goto, K. Miyamoto et al., “Efficacy of single-bolus administration of sodium bicarbonate to prevent contrast-induced nephropathy in patients with mild renal insufficiency undergoing an elective coronary procedure,” The American Journal of Cardiology, vol. 104, no. 7, pp. 921–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. S. D. Navaneethan, S. Singh, S. Appasamy, R. E. Wing, and A. R. Sehgal, “Sodium bicarbonate therapy for prevention of contrast-induced nephropathy: a systematic review and meta-analysis,” American Journal of Kidney Diseases, vol. 53, no. 4, pp. 617–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. E. A. J. Hoste, J. J. de Waele, S. A. Gevaert, S. Uchino, and J. A. Kellum, “Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis,” Nephrology Dialysis Transplantation, vol. 25, no. 3, pp. 747–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Joannidis, M. Schmid, and C. J. Wiedermann, “Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis,” Wiener Klinische Wochenschrift, vol. 120, no. 23-24, pp. 742–748, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. J. S. Jang, H. Y. Jin, J. S. Seo et al., “Sodium bicarbonate therapy for the prevention of contrast-induced acute kidney injury—a systematic review and meta-analysis,” Circulation Journal, vol. 76, pp. 2255–2265, 2012. View at Google Scholar
  144. F. Assadi, “Acetazolamide for prevention of contrast-induced nephropathy: a new use for an old drug,” Pediatric Cardiology, vol. 27, no. 2, pp. 238–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Pakfetrat, M. H. Nikoo, L. Malekmakan et al., “A comparison of sodium bicarbonate infusion versus normal saline infusion and its combination with oral acetazolamide for prevention of contrast-induced nephropathy: a randomized, double-blind trial,” International Urology and Nephrology, vol. 41, no. 3, pp. 629–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. D. Markota, I. Markota, B. Starcevic, M. Tomic, Z. Prskalo, and I. Brizic, “Prevention of contrast-induced nephropathy with Na/K citrate,” European Heart Journal, vol. 34, pp. 2362–2367, 2013. View at Google Scholar
  147. D. Reddan, M. Laville, and V. D. Garovic, “Contrast-induced nephropathy and its prevention: what do we really know from evidence-based findings?” Journal of Nephrology, vol. 22, no. 3, pp. 333–351, 2009. View at Google Scholar · View at Scopus
  148. S. Zoungas, T. Ninomiya, R. Huxley et al., “Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy,” Annals of Internal Medicine, vol. 151, no. 9, pp. 631–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. S. S. Brar, A. Y. Shen, M. B. Jorgensen et al., “Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 9, pp. 1038–1046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. S. S. Brar, S. Hiremath, G. Dangas, R. Mehran, S. K. Brar, and M. B. Leon, “Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 10, pp. 1584–1592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. L. Shavit, R. Korenfeld, M. Lifschitz, A. Butnaru, and I. Slotki, “Sodium bicarbonate versus sodium chloride and oral N-acetylcysteine for the prevention of contrast-induced nephropathy in advanced chronic kidney disease,” Journal of Interventional Cardiology, vol. 22, no. 6, pp. 556–563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. A. Vasheghani-Farahani, G. Sadigh, S. E. Kassaian et al., “Sodium bicarbonate plus isotonic saline versus saline for prevention of contrast-induced nephropathy in patients undergoing coronary angiography: a randomized controlled trial,” American Journal of Kidney Diseases, vol. 54, no. 4, pp. 610–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. A. M. From, B. J. Bartholmai, A. W. Williams, S. S. Cha, A. Pflueger, and F. S. McDonald, “Sodium bicarbonate is associated with an increased incidence of contrast nephropathy: a retrospective cohort study of 7977 patients at Mayo Clinic,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 1, pp. 10–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. D. Fliser, M. Laville, A. Covic et al., “A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury, part 1: definitions, conservative management and contrast-induced nephropathy,” Nephrology Dialysis Transplantation, vol. 27, pp. 4263–4272, 2012. View at Google Scholar
  155. S. D. Weisbord, M. Gallagher, J. Kaufman et al., “Prevention of contrast-induced AKI: a review of published trials and the design of the prevention of serious adverse events following angiography (PRESERVE) trial,” Clinical Journal of the American Society of Nephrology, vol. 8, no. 9, pp. 1618–1631, 2013. View at Google Scholar
  156. R. Safirstein, L. Andrade, and J. M. Vieira, “Acetylcysteine and nephrotoxic effects of radiographic contrast agents—a new use for an old drug,” The New England Journal of Medicine, vol. 343, no. 3, pp. 210–212, 2000. View at Publisher · View at Google Scholar · View at Scopus
  157. H. C. Lee, S. H. Sheu, I. H. Liu et al., “Impact of short-duration administration of N-acetylcysteine, probucol and ascorbic acid on contrast-induced cytotoxicity,” Journal of Nephrology, vol. 25, pp. 56–62, 2012. View at Google Scholar
  158. J. DiMari, J. Megyesi, N. Udvarhelyi, P. Price, R. Davis, and R. Safirstein, “N-acetyl cysteine ameliorates ischemic renal failure,” The American Journal of Physiology—Renal Physiology, vol. 272, no. 3, pp. F292–F298, 1997. View at Google Scholar · View at Scopus
  159. M. Tepel, M. van der Giet, C. Schwarzfeld, U. Laufer, D. Liermann, and W. Zidek, “Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine,” The New England Journal of Medicine, vol. 343, no. 3, pp. 180–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  160. C. S. R. Baker, A. Wragg, S. Kumar, R. de Palma, L. R. I. Baker, and C. J. Knight, “A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study,” Journal of the American College of Cardiology, vol. 41, no. 12, pp. 2114–2118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. C. Briguori, A. Colombo, A. Violante et al., “Standard vs double dose of N-acetylcysteine to prevent contrast agent associated nephrotoxicity,” European Heart Journal, vol. 25, no. 3, pp. 206–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  162. J. D. Durham, C. Caputo, J. Dokko et al., “A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography,” Kidney International, vol. 62, no. 6, pp. 2202–2207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  163. S. Allaqaband, R. Tumuluri, A. M. Malik et al., “Prospective randomized study of N-acetylcysteine, fenoldopam, and saline for prevention of radiocontrast-induced nephropathy,” Catheterization and Cardiovascular Interventions, vol. 57, no. 3, pp. 279–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. I. Goldenberg, M. Shechter, S. Matetzky et al., “Oral acetylcysteine as an adjunct to saline hydration for the prevention of contrast-induced nephropathy following coronary angiography: a randomized controlled trial and review of the current literature,” European Heart Journal, vol. 25, no. 3, pp. 212–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. N. Pannu, B. Manns, H. Lee, and M. Tonelli, “Systematic review of the impact of N-acetylcysteine on contrast nephropathy,” Kidney International, vol. 65, no. 4, pp. 1366–1374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. L. C. Coyle, A. Rodriguez, R. E. Jeschke, A. Simon-Lee, K. C. Abbott, and A. J. Taylor, “Acetylcysteine In Diabetes (AID): a randomized study of acetylcysteine for the prevention of contrast nephropathy in diabetics,” American Heart Journal, vol. 151, no. 5, pp. 1032.e9–1032.e12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  167. F. Ferrario, M. T. Barone, G. Landoni et al., “Acetylcysteine and non-ionic isosmolar contrast-induced nephropathy—a randomized controlled study,” Nephrology Dialysis Transplantation, vol. 24, no. 10, pp. 3103–3107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. H. S. Gurm, D. E. Smith, O. Berwanger et al., “Contemporary use and effectiveness of n-acetylcysteine in preventing contrast-induced nephropathy among patients undergoing percutaneous coronary intervention,” JACC: Cardiovascular Interventions, vol. 5, no. 1, pp. 98–104, 2012. View at Publisher · View at Google Scholar · View at Scopus
  169. R. Birck, S. Krzossok, F. Markowetz, P. Schnülle, F. J. van der Woude, and C. Braun, “Acetylcysteine for prevention of contrast nephropathy: meta-analysis,” The Lancet, vol. 362, no. 9384, pp. 598–603, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. K. Spargias, E. Alexopoulos, S. Kyrzopoulos et al., “Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention,” Circulation, vol. 110, no. 18, pp. 2837–2842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  171. E. Alexopoulos, K. Spargias, S. Kyrzopoulos et al., “Contrast-induced acute kidney injury in patients with renal dysfunction undergoing a coronary procedure and receiving non-ionic low-osmolar versus iso-osmolar contrast media,” American Journal of the Medical Sciences, vol. 339, no. 1, pp. 25–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. A. Boscheri, C. Weinbrenner, B. Botzek, K. Reynen, E. Kuhlisch, and R. H. Strasser, “Failure of ascorbic acid to prevent contrast-media induced nephropathy in patients with renal dysfunction,” Clinical Nephrology, vol. 68, no. 5, pp. 279–286, 2007. View at Google Scholar · View at Scopus
  173. S. Jo, B. Koo, J. Park et al., “N-acetylcysteine versus AScorbic acid for preventing contrast-Induced nephropathy in patients with renal insufficiency undergoing coronary angiography. NASPI study—a prospective randomized controlled trial,” American Heart Journal, vol. 157, no. 3, pp. 576–583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. A. Tasanarong, A. Vohakiat, P. Hutayanon, and D. Piyayotai, “New strategy of alpha- and gamma-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures,” Nephrology Dialysis Transplantation, vol. 28, pp. 337–344, 2013. View at Google Scholar
  175. D. Yang, S. Lin, D. Yang, L. Wei, and W. Shang, “Effects of short- and long-term hypercholesterolemia on contrast-induced acute kidney injury,” American Journal of Nephrology, vol. 35, no. 1, pp. 80–89, 2012. View at Publisher · View at Google Scholar · View at Scopus
  176. S. Khanal, N. Attallah, D. E. Smith et al., “Statin therapy reduces contrast-induced nephropathy: an analysis of contemporary percutaneous interventions,” American Journal of Medicine, vol. 118, no. 8, pp. 843–849, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. G. Patti, A. Nusca, M. Chello et al., “Usefulness of statin pretreatment to prevent contrast-induced nephropathy and to improve long-term outcome in patients undergoing percutaneous coronary intervention,” The American Journal of Cardiology, vol. 101, no. 3, pp. 279–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. M. Andreucci, “Statins in CIN: a problem at least partly solved?” Giornale Italiano di Nefrologia, vol. 30, no. 3, 2013. View at Google Scholar
  179. Y. Han, G. Zhu, L. Han et al., “Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease,” Journal of the American College of Cardiology, vol. 63, no. 1, pp. 62–70, 2013. View at Google Scholar
  180. K. E. Al-Otaibi, A. M. Al Elaiwi, M. Tariq, and A. K. Al-Asmari, “Simvastatin attenuates contrast-induced nephropathy through modulation of oxidative stress, proinflammatory myeloperoxidase, and nitric oxide,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 831748, 8 pages, 2012. View at Publisher · View at Google Scholar
  181. S. Yoshida, H. Kamihata, S. Nakamura et al., “Prevention of contrast-induced nephropathy by chronic pravastatin treatment in patients with cardiovascular disease and renal insufficiency,” Journal of Cardiology, vol. 54, no. 2, pp. 192–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. M. A. Muñoz, P. R. Maxwell, K. Green, D. W. Hughes, and R. L. Talbert, “Pravastatin versus simvastatin for prevention of contrast-induced nephropathy,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 16, no. 3-4, pp. 376–379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Acikel, H. Muderrisoglu, A. Yildirir et al., “Prevention of contrast-induced impairment of renal function by short-term or long-term statin therapy in patients undergoing elective coronary angiography,” Blood Coagulation and Fibrinolysis, vol. 21, no. 8, pp. 750–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. C. Quintavalle, D. Fiore, F. de Micco et al., “Impact of a high loading dose of atorvastatin on contrast-induced acute kidney injury,” Circulation, vol. 126, pp. 3008–3016, 2012. View at Google Scholar
  185. M. Leoncini, A. Toso, M. Maioli, F. Tropeano, and F. Bellandi, “Statin treatment before percutaneous cononary intervention,” Journal of Thoracic Disease, vol. 5, pp. 335–342, 2013. View at Google Scholar
  186. B. Zhang, W. Li, and Y. Xu, “High-dose statin pretreatment for the prevention of contrast-induced nephropathy: a meta-analysis,” Canadian Journal of Cardiology, vol. 27, no. 6, pp. 851–858, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. G. Patti, E. Ricottini, A. Nusca et al., “Short-term, high-dose atorvastatin pretreatment to prevent contrast-induced nephropathy in patients with acute coronary syndromes undergoing percutaneous coronary intervention (from the ARMYDA-CIN [atorvastatin for reduction of myocardial damage during angioplasty-contrast-induced nephropathy] trial,” The American Journal of Cardiology, vol. 108, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  188. A. Veverka, D. S. Nuzum, and J. L. Jolly, “Nebivolol: a third-generation β-adrenergic blocker,” Annals of Pharmacotherapy, vol. 40, no. 7-8, pp. 1353–1360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  189. S. S. Sule and W. Frishman, “Nebivolol: new therapy update,” Cardiology in Review, vol. 14, no. 5, pp. 259–264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  190. O. Toprak, M. Cirit, M. Tanrisev et al., “Preventive effect of nebivolol on contrast-induced nephropathy in rats,” Nephrology Dialysis Transplantation, vol. 23, no. 3, pp. 853–859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  191. E. Avci, M. Yeşil, S. Bayata, N. Postaci, E. Arikan, and M. Cirit, “The role of nebivolol in the prevention of contrast-induced nephropathy in patients with renal dysfunction,” Anadolu Kardiyoloji Dergisi, vol. 11, no. 7, pp. 613–617, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. Ö. Günebakmaz, M. G. Kaya, F. Koc et al., “Does nebivolol prevent contrast-induced nephropathy in humans?” Clinical Cardiology, vol. 35, no. 4, pp. 250–254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  193. A. Kodama, H. Watanabe, R. Tanaka et al., “A human serum albumin-thioredoxin fusion protein prevents experimental contrast-induced nephropathy,” Kidney International, vol. 83, pp. 446–454, 2013. View at Google Scholar
  194. R. A. Machado, S. Constantino Lde, C. D. Tomasi et al., “Sodium butyrate decreases the activation of NF-kappaB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy,” Nephrology Dialysis Transplantation, vol. 27, pp. 3136–3140, 2012. View at Google Scholar
  195. F. Ribichini, A. Gambaro, M. Pighi et al., “Effects of prednisone on biomarkers of tubular damage induced by radiocontrast in interventional cardiology,” Journal of Nephrology, vol. 26, pp. 586–593, 2013. View at Google Scholar
  196. S. Kumar, D. A. Allen, J. E. Kieswich et al., “Dexamethasone ameliorates renal ischemia-reperfusion injury,” Journal of the American Society of Nephrology, vol. 20, no. 11, pp. 2412–2425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  197. M. R. Rudnick, S. Goldfarb, L. Wexler et al., “Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial,” Kidney International, vol. 47, no. 1, pp. 254–261, 1995. View at Google Scholar · View at Scopus
  198. G. Romano, C. Briguori, C. Quintavalle et al., “Contrast agents and renal cell apoptosis,” European Heart Journal, vol. 29, no. 20, pp. 2569–2576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  199. A. M. From, F. J. Al Badarin, F. S. McDonald, B. J. Bartholmai, S. S. Cha, and C. S. Rihal, “Iodixanol versus low-osmolar contrast media for prevention of contrast induced nephropathy meta-analysis of randomized, controlled trials,” Circulation: Cardiovascular Interventions, vol. 3, no. 4, pp. 351–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  200. G. Biondi-Zoccai, M. Lotrionte, H. S. Thomsen et al., “Nephropathy after administration of iso-osmolar and low-osmolar contrast media: evidence from a network meta-analysis,” International Journal of Cardiology, vol. 172, no. 2, pp. 375–380, 2014. View at Google Scholar
  201. J. J. Keaney, C. M. Hannon, and P. T. Murray, “Contrast-induced acute kidney injury: how much contrast is safe?” Nephrology Dialysis Transplantation, vol. 28, pp. 1376–1383, 2013. View at Google Scholar
  202. R. G. Cigarroa, R. A. Lange, R. H. Williams, and L. D. Hillis, “Dosing of contrast material to prevent contrast nephropathy in patients with renal disease,” American Journal of Medicine, vol. 86, no. 6 I, pp. 649–652, 1989. View at Google Scholar · View at Scopus
  203. W. K. Laskey, C. Jenkins, F. Selzer et al., “Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention,” Journal of the American College of Cardiology, vol. 50, no. 7, pp. 584–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. A. Mager, H. Vaknin Assa, E. I. Lev, T. Bental, A. Assali, and R. Kornowski, “The ratio of contrast volume to glomerular filtration rate predicts outcomes after percutaneous coronary intervention for ST-segment elevation acute myocardial infarction,” Catheterization and Cardiovascular Interventions, vol. 78, no. 2, pp. 198–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  205. H. S. Gurm, S. R. Dixon, D. E. Smith et al., “Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions,” Journal of the American College of Cardiology, vol. 58, no. 9, pp. 907–914, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. J.-M. Weinstein, S. Heyman, and M. Brezis, “Potential deleterious effect of furosemide in radiocontrast nephropathy,” Nephron, vol. 62, no. 4, pp. 413–415, 1992. View at Google Scholar · View at Scopus
  207. L. S. Weisberg, P. B. Kurnik, and B. R. C. Kurnik, “Risk of radiocontrast nephropathy in patients with and without diabetes mellitus,” Kidney International, vol. 45, no. 1, pp. 259–265, 1994. View at Google Scholar · View at Scopus
  208. S. R. Majumdar, C. M. Kjellstrand, W. J. Tymchak, M. Hervas-Malo, D. A. Taylor, and K. K. Teo, “Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial,” American Journal of Kidney Diseases, vol. 54, no. 4, pp. 602–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  209. B. R. C. Kurnik, R. L. Allgren, F. C. Center, R. J. Solomon, E. R. Bates, and L. S. Weisberg, “Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy,” American Journal of Kidney Diseases, vol. 31, no. 4, pp. 674–680, 1998. View at Google Scholar · View at Scopus
  210. D. Yang, D. Yang, R. Jia, and J. Tan, “N2+/Ca2+ exchange inhibitor, KB-R7943, attenuates contrast-induced acute kidney injury,” Journal of Nephrology, vol. 26, pp. 877–885, 2013. View at Google Scholar
  211. H.-H. Neumayer, W. Junge, A. Kufner, and A. Wenning, “Prevention of radiocontrast-media-induced nephrotoxicity by the calcium channel blocker nitrendipine: a prospective randomised clinical trial,” Nephrology Dialysis Transplantation, vol. 4, no. 12, pp. 1030–1036, 1989. View at Google Scholar · View at Scopus
  212. D. Russo, A. Testa, L. della Volpe, and G. Sansone, “Randomised prospective study on renal effects of two different contrast media in humans: protective role of a calcium channel blocker,” Nephron, vol. 55, no. 3, pp. 254–257, 1990. View at Google Scholar · View at Scopus
  213. Z. Khoury, J. R. Schlicht, J. Como et al., “The effect of prophylactic nifedipine on renal function in patients administered contrast media,” Pharmacotherapy, vol. 15, no. 1 I, pp. 59–65, 1995. View at Google Scholar · View at Scopus
  214. B. Spangberg-Viklund, J. Berglund, T. Nikonoff, P. Nyberg, T. Skau, and R. Larsson, “Does prophylactic treatment with felodipine, a calcium antagonist, prevent low-osmolar contrast-induced renal dysfunction in hydrated diabetic and nondiabetic patients with normal or moderately reduced renal function?” Scandinavian Journal of Urology and Nephrology, vol. 30, no. 1, pp. 63–68, 1996. View at Google Scholar · View at Scopus
  215. C. M. Erley, S. H. Duda, S. Schlepckow et al., “Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application,” Kidney International, vol. 45, no. 5, pp. 1425–1431, 1994. View at Google Scholar · View at Scopus
  216. R. E. Katholi, G. J. Taylor, W. P. McCann et al., “Nephrotoxicity from contrast media: attenuation with theophylline,” Radiology, vol. 195, no. 1, pp. 17–22, 1995. View at Google Scholar · View at Scopus
  217. C. M. Erley, S. H. Duda, D. Rehfuss et al., “Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline,” Nephrology Dialysis Transplantation, vol. 14, no. 5, pp. 1146–1149, 1999. View at Publisher · View at Google Scholar · View at Scopus
  218. W. Huber, K. Ilgmann, M. Page et al., “Effect of theophylline on contrast material-induced nephropathy in patients with chronic renal insufficiency: controlled, randomized, double-blinded study,” Radiology, vol. 223, no. 3, pp. 772–779, 2002. View at Google Scholar · View at Scopus
  219. A. Kapoor, S. Kumar, S. Gulati, S. Gambhir, R. S. Sethi, and N. Sinha, “The role of theophylline in contrast-induced nephropathy: a case-control study,” Nephrology Dialysis Transplantation, vol. 17, no. 11, pp. 1936–1941, 2002. View at Google Scholar · View at Scopus
  220. A. S. Abizaid, C. E. Clark, G. S. Mintz et al., “Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency,” The American Journal of Cardiology, vol. 83, no. 2, pp. 260–263, A265, 1999. View at Publisher · View at Google Scholar · View at Scopus
  221. N. W. Shammas, M. J. Kapalis, M. Harris, D. McKinney, and E. P. Coyne, “Aminophylline does not protect against Radiocontrast Nephropathy in patients undergoing percutaneous angiographic procedures,” Journal of Invasive Cardiology, vol. 13, no. 11, pp. 738–740, 2001. View at Google Scholar · View at Scopus
  222. S. S. Hans, B. A. Hans, R. Dhillon, C. Dmuchowski, and J. Glover, “Effect of dopamine on renal function after arteriography in patients with pre-existing renal insufficiency,” American Surgeon, vol. 64, no. 5, pp. 432–436, 1998. View at Google Scholar · View at Scopus
  223. A. A. Chamsuddin, K. J. Kowalik, H. Bjarnason et al., “Using a dopamine type 1A receptor agonist in high-risk patients to ameliorate contrast-associated nephropathy,” American Journal of Roentgenology, vol. 179, no. 3, pp. 591–596, 2002. View at Google Scholar · View at Scopus
  224. A. S. Kini, C. A. Mitre, M. Kamran et al., “Changing trends in incidence and predictors of radiographic contrast nephropathy after percutaneous coronary intervention with use of fenoldopam,” The American Journal of Cardiology, vol. 89, no. 8, pp. 999–1002, 2002. View at Publisher · View at Google Scholar · View at Scopus
  225. G. W. Stone, P. A. McCullough, J. A. Tumlin et al., “Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial,” Journal of the American Medical Association, vol. 290, no. 17, pp. 2284–2291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  226. A. Wang, T. Holcslaw, T. M. Bashore et al., “Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism,” Kidney International, vol. 57, no. 4, pp. 1675–1680, 2000. View at Publisher · View at Google Scholar · View at Scopus
  227. J. Koch, J. Plum, B. Grabensee, and U. Mödder, “Prostaglandin E1: a new agent for the prevention of renal dysfunction in high risk patients caused by radiocontrast media?” Nephrology Dialysis Transplantation, vol. 15, no. 1, pp. 43–49, 2000. View at Google Scholar · View at Scopus
  228. T. Lehnert, E. Keller, K. Gondolf, T. Schäffner, H. Pavenstädt, and P. Schollmeyer, “Effect of haemodialysis after contrast medium administration in patients with renal insufficiency,” Nephrology Dialysis Transplantation, vol. 13, no. 2, pp. 358–362, 1998. View at Google Scholar · View at Scopus
  229. R. Schindler, C. Stahl, S. Venz, K. Ludat, W. Krause, and U. Frei, “Removal of contrast media by different extracorporeal treatments,” Nephrology Dialysis Transplantation, vol. 16, no. 7, pp. 1471–1474, 2001. View at Google Scholar · View at Scopus
  230. B. Vogt, P. Ferrari, C. Schönholzer et al., “Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful,” American Journal of Medicine, vol. 111, no. 9, pp. 692–698, 2001. View at Publisher · View at Google Scholar · View at Scopus
  231. V. L. M. Esnault, “Radiocontrast media-induced nephrotoxicity in patients with renal failure: rationale for a new double-blind, prospective, randomized trial testing calcium channel antagonists,” Nephrology Dialysis Transplantation, vol. 17, no. 8, pp. 1362–1364, 2002. View at Google Scholar · View at Scopus
  232. S. P. Wood, “Contrast-induced nephropathy in critical care,” Critical Care Nurse, vol. 32, pp. 15–23, 2012. View at Google Scholar
  233. A. J. Kallen, M. A. Jhung, S. Cheng et al., “Gadolinium-containing magnetic resonance imaging contrast and nephrogenic systemic fibrosis: a case-control study,” American Journal of Kidney Diseases, vol. 51, no. 6, pp. 966–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  234. S. Bahrami, S. S. Raman, S. Sauk et al., “Ten-year experience with nephrogenic systemic fibrosis: case-control analysis of risk factors,” Journal of Computer Assisted Tomography, vol. 33, no. 6, pp. 819–823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. M. Andreucci, “Contrast media and nephrotoxicity: a molecular conundrum,” Giornale Italiano di Nefrologia, vol. 28, no. 4, article 355, 2011. View at Google Scholar