Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 750961, 9 pages
http://dx.doi.org/10.1155/2014/750961
Research Article

De Novo Assembly and Characterization of Sophora japonica Transcriptome Using RNA-seq

1Institute of System Biology, Shanghai University, Shanghai 200444, China
2Yangzhou Breeding Biological Agriculture Technology Co. Ltd., Yangzhou 225200, China
3Department of Mathematics, Shanghai University, Shanghai 200444, China
4State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China

Received 25 September 2013; Revised 22 November 2013; Accepted 25 November 2013; Published 2 January 2014

Academic Editor: Tao Huang

Copyright © 2014 Liucun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Kim and H. S. Yun-Choi, “Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica,” Archives of Pharmacal Research, vol. 31, no. 7, pp. 886–890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Ishida, T. Umino, K. Tsuji, and T. Kosuge, “Studies on the antihemostatic substances in herbs classified as hemostatics in traditional Chinese medicine. I. On the antihemostatic principles in Sophora japonica L.,” Chemical and Pharmaceutical Bulletin, vol. 37, no. 6, pp. 1616–1618, 1989. View at Google Scholar · View at Scopus
  3. T. L. Parchman, K. S. Geist, J. A. Grahnen, C. W. Benkman, and C. A. Buerkle, “Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery,” BMC Genomics, vol. 11, no. 1, article 180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Dassanayake, J. S. Haas, H. J. Bohnert, and J. M. Cheeseman, “Shedding light on an extremophile lifestyle through transcriptomics,” The New Phytologist, vol. 183, no. 3, pp. 764–775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Alagna, N. D'Agostino, L. Torchia et al., “Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development,” BMC Genomics, vol. 10, article 399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. O. Mutz, A. Heilkenbrinker, M. Lonne, J. G. Walter, and F. Stahl, “Transcriptome analysis using next-generation sequencing,” Current Opinion in Biotechnology, vol. 24, no. 1, pp. 22–30, 2013. View at Google Scholar
  7. T. T. Torres, M. Metta, B. Ottenwälder, and C. Schlötterer, “Gene expression profiling by massively parallel sequencing,” Genome Research, vol. 18, no. 1, pp. 172–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Clark, M. A. S. Thorne, F. A. Vieira, J. C. R. Cardoso, D. M. Power, and L. S. Peck, “Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing,” BMC Genomics, vol. 11, no. 1, article 362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and quantifying mammalian transcriptomes by RNA-Seq,” Nature Methods, vol. 5, no. 7, pp. 621–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Shi, H. Yang, C. Wei et al., “Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds,” BMC Genomics, vol. 12, article 131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Novaes, D. R. Drost, W. G. Farmerie et al., “High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome,” BMC Genomics, vol. 9, article 312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Gayral, J. Melo-Ferreira, S. Glemin et al., “Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap,” PLoS Genetics, vol. 9, no. 4, Article ID e1003457, 2013. View at Google Scholar
  13. L. Wan, J. Han, M. Sang et al., “De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels,” PLoS ONE, vol. 7, no. 4, Article ID e35142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. M. G. Grabherr, B. J. Haas, M. Yassour et al., “Full-length transcriptome assembly from RNA-Seq data without a reference genome,” Nature Biotechnology, vol. 29, no. 7, pp. 644–652, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Li and C. N. Dewey, “RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome,” BMC Bioinformatics, vol. 12, article 323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. R. L. Tatusov, D. A. Natale, I. V. Garkavtsev et al., “The COG database: new developments in phylogenetic classification of proteins from complete genomes,” Nucleic Acids Research, vol. 29, no. 1, pp. 22–28, 2001. View at Google Scholar · View at Scopus
  17. A. Conesa, S. Götz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles, “Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research,” Bioinformatics, vol. 21, no. 18, pp. 3674–3676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Ye, L. Fang, H. Zheng et al., “WEGO: a web tool for plotting GO annotations,” Nucleic Acids Research, vol. 34, pp. W293–W297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori, “The KEGG resource for deciphering the genome,” Nucleic Acids Research, vol. 32, pp. D277–D280, 2004. View at Google Scholar · View at Scopus
  20. Y. Moriya, M. Itoh, S. Okuda, A. C. Yoshizawa, and M. Kanehisa, “KAAS: an automatic genome annotation and pathway reconstruction server,” Nucleic Acids Research, vol. 35, pp. W182–W185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Szklarczyk, A. Franceschini, M. Kuhn et al., “The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored,” Nucleic Acids Research, vol. 39, no. 1, pp. D561–D568, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. R. M. Ferreira, J. L. Rybarczyk-Filho, R. J. Dalmolin et al., “Preferential duplication of intermodular hub genes: an evolutionary signature in eukaryotes genome networks,” PloS ONE, vol. 8, no. 2, Article ID e56579, 2013. View at Google Scholar
  23. X. Xu and M. Zhou, “Rank-dependent deactivation in network evolution,” Physical Review E, vol. 80, no. 6, Article ID 066105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Guo, J. A. Xian, A. L. Wang, C. X. Ye, and Y. T. Miao, “Trascriptome analysis of the Pacific white shrimp Litopenaeus vannamei exposed to nitrite by RNA-seq,” Fish and Shellfish Immunology, vol. 35, no. 6, pp. 2008–2016, 2013. View at Google Scholar
  25. S. M. Gross, J. A. Martin, J. Simpson, M. J. Abraham-Juarez, Z. Wang, and A. Visel, “De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana,” BMC Genomics, vol. 14, article 563, 2013. View at Google Scholar
  26. J. Liu, T. Yin, N. Ye et al., “Transcriptome analysis of the differentially expressed genes in the male and female shrub willows (Salix suchowensis),” PloS ONE, vol. 8, no. 4, Article ID e60181, 2013. View at Google Scholar
  27. H. Fan, Y. Xiao, Y. Yang et al., “RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches,” PloS ONE, vol. 8, no. 3, Article ID e59997, 2013. View at Google Scholar
  28. W. D. Ong, L. Y. Voo, and V. S. Kumar, “De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing,” PloS ONE, vol. 7, no. 10, Article ID e46937, 2012. View at Google Scholar
  29. H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and centrality in protein networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási, “Hierarchical organization of modularity in metabolic networks,” Science, vol. 297, no. 5586, pp. 1551–1555, 2002. View at Publisher · View at Google Scholar · View at Scopus