Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 762126, 10 pages
http://dx.doi.org/10.1155/2014/762126
Research Article

Data Analysis and Tissue Type Assignment for Glioblastoma Multiforme

1School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2Department of Radiology and Department of Imaging and Pathology, University Hospitals of Leuven, 3001 Leuven, Belgium

Received 18 November 2013; Revised 13 January 2014; Accepted 23 January 2014; Published 3 March 2014

Academic Editor: Bairong Shen

Copyright © 2014 Yuqian Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kleihues and W. K. Cavenee, Pathology and Genetics of Tumours of the Nervous System, International Agency for Research on Cancer Press, Lyon, France, 2000.
  2. A. C. Sava, M. C. Martinez-Bisbal, S. van Huffel, J. M. Cerda, D. M. Sima, and B. Celda, “Ex vivo high resolution magic angle spinning metabolic profiles describe intratumoral histopathological tissue properties in adult human gliomas,” Magnetic Resonance in Medicine, vol. 65, no. 2, pp. 320–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Nelson, “Magnetic resonance spectroscopic imaging,” IEEE Engineering in Medicine and Biology Magazine, vol. 23, no. 5, pp. 30–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Gadian, NMR and Its Applications to Living Systems, Oxford Science, Oxford, UK, 2nd edition, 1995.
  5. F. S. de Edelenyi, A. W. Simonetti, G. Postma, R. Huo, and L. M. C. Buydens, “Application of independent component analysis to 1H MR spectroscopic imaging exams of brain tumours,” Analytica Chimica Acta, vol. 544, no. 1-2, pp. 36–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. F. S. de Edelenyi, C. Rubin, F. Estève et al., “A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images,” Nature Medicine, vol. 6, no. 11, pp. 1287–1289, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. M. de Vos, T. Laudadio, A. W. Simonetti, A. Heerschap, and S. van Huffel, “Fast nosologic imaging of the brain,” Journal of Magnetic Resonance, vol. 184, no. 2, pp. 292–301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Laudadio, M. C. Martínez-Bisbal, B. Celda, and S. van Huffel, “Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging,” NMR in Biomedicine, vol. 21, no. 4, pp. 311–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Luts, T. Laudadio, A. J. Idema et al., “Nosologic imaging of the brain: segmentation and classification using MRI and MRSI,” NMR in Biomedicine, vol. 22, no. 4, pp. 374–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Ochs, R. S. Stoyanova, F. Arias-Mendoza, and T. R. Brown, “A new method for spectral decomposition using a bilinear Bayesian approach,” Journal of Magnetic Resonance, vol. 137, no. 1, pp. 161–176, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Sajda, S. Du, T. R. Brown et al., “Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain,” IEEE Transactions on Medical Imaging, vol. 23, no. 12, pp. 1453–1465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Du, X. Mao, P. Sajda, and D. C. Shungu, “Automated tissue segmentation and blind recovery of 1H MRS imaging spectral patterns of normal and diseased human brain,” NMR in Biomedicine, vol. 21, no. 1, pp. 33–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Ortega-Martorell, P. J. G. Lisboa, A. Vellido, M. Julià-Sapé, and C. Arús, “Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours,” BMC Bioinformatics, vol. 13, article 38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Li, D. M. Sima, S. van Cauter et al., “Hierarchical non-negative matrix factorization (hNMF): a tissue pattern differentiation method for glioblastoma multiforme diagnosis using MRSI,” NMR in Biomedicine, vol. 26, no. 3, pp. 307–319, 2013. View at Publisher · View at Google Scholar
  16. Y. Li, D. M. Sima, S. van Cauter et al., “Unsupervised nosologic imaging for glioma diagnosis,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 6, pp. 1760–1763, 2013. View at Publisher · View at Google Scholar
  17. P. A. Bottomley, “Spatial localization in NMR spectroscopy in vivo,” Annals of the New York Academy of Sciences, vol. 508, pp. 333–348, 1987. View at Publisher · View at Google Scholar · View at Scopus
  18. D. N. Louis, H. Ohgaki, O. D. Wiestler et al., “The 2007 WHO classification of tumours of the central nervous system,” Acta Neuropathologica, vol. 114, no. 2, pp. 97–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. B. Poullet, Quantification and classification of magnetic resonance spectroscopic data for brain tumor diagnosis [Ph.D. dissertation], Department of Electrical Engineering, KU Leuven, Leuven, Belgium, 2008.
  20. R. Kreis, “Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts,” NMR in Biomedicine, vol. 17, no. 6, pp. 361–381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Law, S. Yang, H. Wang et al., “Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging,” American Journal of Neuroradiology, vol. 24, no. 10, pp. 1989–1998, 2003. View at Google Scholar · View at Scopus
  22. E. J. Delikatny, S. Chawla, D.-J. Leung, and H. Poptani, “MR-visible lipids and the tumor microenvironment,” NMR in Biomedicine, vol. 24, no. 6, pp. 592–611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Wright, G. Fellows, T. J. Byrnes et al., “Pattern recognition of MRSI data shows regions of glioma growth that agree with DTI markers of brain tumor infiltration,” Magnetic Resonance in Medicine, vol. 62, no. 6, pp. 1646–1651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Claes, A. J. Idema, and P. Wesseling, “Diffuse glioma growth: a guerilla war,” Acta Neuropathologica, vol. 114, no. 5, pp. 443–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. D. J. Brat, A. A. Castellano-Sanchez, S. B. Hunter et al., “Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population,” Cancer Research, vol. 64, no. 3, pp. 920–927, 2004. View at Publisher · View at Google Scholar · View at Scopus