Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 765794, 8 pages
http://dx.doi.org/10.1155/2014/765794
Research Article

Heparin and Liver Heparan Sulfate Can Rescue Hepatoma Cells from Topotecan Action

1Department Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
2First Institute of Pathology & Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllöi út 26, 1085 Budapest, Hungary
3Department of Otorhinolaryngology, Faculty Medical Department, Asfendiyarov Kazakh National Medical University, Specialty Otorhinolaryngology, Index 05-00-12, Almaty, Kazakhstan

Received 29 May 2014; Revised 23 July 2014; Accepted 12 August 2014; Published 7 September 2014

Academic Editor: George Tzanakakis

Copyright © 2014 József Dudás et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bernfield, M. Götte, P. W. Park et al., “Functions of cell surface heparan sulfate proteoglycans,” Annual Review of Biochemistry, vol. 68, pp. 729–777, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Lin and N. Perrimon, “Role of heparan sulfate proteoglycans in cell-cell signaling in Drosophila,” Matrix Biology, vol. 19, no. 4, pp. 303–307, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Ashikari-Hada, H. Habuchi, Y. Kariya, N. Itoh, A. H. Reddi, and K. Kimata, “Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library,” The Journal of Biological Chemistry, vol. 279, no. 13, pp. 12346–12354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kan, X. Wu, F. Wang, and W. L. McKeehan, “Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase,” Journal of Biological Chemistry, vol. 274, no. 22, pp. 15947–15952, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Pellegrini, “Role of heparan sulfate in fibroblast growth factor signalling: a structural view,” Current Opinion in Structural Biology, vol. 11, no. 5, pp. 629–634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Sebestyén, M. Gallai, T. Knittel, T. Ambrust, G. Ramadori, and I. Kovalszky, “Cytokine regulation of syndecan expression in cells of liver origin,” Cytokine, vol. 12, no. 10, pp. 1557–1560, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Péterfia, T. Füle, K. Baghy et al., “Syndecan-1 enhances proliferation, migration and metastasis of HT-1080 cells in cooperation with syndecan-2,” PLoS ONE, vol. 7, no. 6, Article ID e39474, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Ricard-Blum, O. Féraud, H. Lortat-Jacob et al., “Characterization of endostatin binding to heparin and heparan sulfate by surface plasmon resonance and molecular modeling: role of divalent cations,” The Journal of Biological Chemistry, vol. 279, no. 4, pp. 2927–2936, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Casu, A. Naggi, and G. Torri, “Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer,” Matrix Biology, vol. 29, no. 6, pp. 442–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Spillmann, D. Witt, and U. Lindahl, “Defining the interleukin-8-binding domain of heparan sulfate,” The Journal of Biological Chemistry, vol. 273, no. 25, pp. 15487–15493, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Lortat-Jacob, A. Grosdidier, and A. Imberty, “Structural diversity of heparan sulfate binding domains in chemokines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1229–1234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Faye, C. Moreau, E. Chautard et al., “Molecular interplay between endostatin, integrins, and heparan sulfate,” The Journal of Biological Chemistry, vol. 284, no. 33, pp. 22029–22040, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ishihara, N. S. Fedarko, and H. E. Conrad, “Transport of heparan sulfate into the nuclei of hepatocytes,” Journal of Biological Chemistry, vol. 261, no. 29, pp. 13575–13580, 1986. View at Google Scholar · View at Scopus
  14. H. Hausser, O. Witt, and H. Kresse, “Influence of membrane-associated heparan sulfate on the internalization of the small proteoglycan decorin,” Experimental Cell Research, vol. 208, no. 2, pp. 398–406, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. A. V. Dix, L. Fischer, S. Sarrazin, C. P. H. Redgate, J. D. Esko, and Y. Tor, “Cooperative, heparan sulfate-dependent cellular uptake of dimeric guanidinoglycosides,” ChemBioChem, vol. 11, no. 16, pp. 2302–2310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Tímár, K. Lapis, J. Dudás, A. Sebestyén, L. Kopper, and I. Kovalszky, “Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer,” Seminars in Cancer Biology, vol. 12, pp. 173–186, 2002. View at Google Scholar
  17. J. Dudas, G. Ramadori, T. Knittel et al., “Effect of heparin and liver heparan sulphate on interaction of HepG2-derived transcription factors and their cis-acting elements: altered potential of hepatocellular carcinoma heparan sulphate,” Biochemical Journal, vol. 350, part 1, pp. 245–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Liu, Z. Shriver, G. Venkataraman, Y. El Shabrawi, and R. Sasisekharan, “Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 568–573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. J. Busch, G. A. Martin, R. L. Barnhart, M. Mano, A. D. Cardin, and R. L. Jackson, “Trans-repressor activity of nuclear glycosaminoglycans on fos and jun/AP-1 oncoprotein-mediated transcription,” Journal of Cell Biology, vol. 116, no. 1, pp. 31–42, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Cheng, P. Petersson, Y. Arroyo-Yanguas, and G. Westergren-Thorsson, “Differences in the uptake and nuclear localization of anti-proliferative heparan sulfate between human lung fibroblasts and human lung carcinoma cells,” Journal of Cellular Biochemistry, vol. 83, no. 4, pp. 597–606, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Kovalszky, J. Dudás, J. Oláh-Nagy et al., “Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor,” Molecular and Cellular Biochemistry, vol. 183, pp. 11–23, 1998. View at Google Scholar
  22. I. Kovalszky, A. Hjerpe, and K. Dobra, “Nuclear translocation of heparan sulfate proteoglycans and their functional significance,” Biochimica et Biophysica Acta, vol. 1840, no. 8, pp. 2491–2497, 2014. View at Publisher · View at Google Scholar
  23. M. T. Tomicic and B. Kaina, “Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors,” Biochimica et Biophysica Acta, vol. 1835, no. 1, pp. 11–27, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. B. E. Loveland, T. G. Johns, L. R. Mackay, F. Vaillant, Z.-X. Wang, and P. J. Hertzog, “Validation of the MTT dye assay for enumeration of cells in proliferative and antiproliferative assays,” Biochemistry International, vol. 27, no. 3, pp. 501–510, 1992. View at Google Scholar · View at Scopus
  25. G. H. Hogeboom, “Fractionation of cell components of animal tissues,” Methods in Enzymology, vol. 1, no. C, pp. 16–19, 1955. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Duguet, C. Lavenot, F. Harper, G. Mirambeau, and A.-M. D. Recondo, “DNA topoisomerases from rat liver: physiological variations,” Nucleic Acids Research, vol. 11, no. 4, pp. 1059–1075, 1983. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Takano, K. Kohno, M. Ono, Y. Uchida, and M. Kuwano, “Increased phosphorylation of DNA topoisomerase II in etoposide-resistant mutants of human cancer KB cells,” Cancer Research, vol. 51, no. 15, pp. 3951–3957, 1991. View at Google Scholar · View at Scopus
  28. R. W. Farndale, C. A. Sayers, and A. J. Barrett, “A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures,” Connective Tissue Research, vol. 9, no. 4, pp. 247–248, 1982. View at Publisher · View at Google Scholar · View at Scopus
  29. A. K. Larsen, L. Grondard, J. Couprie et al., “The antileukemic alkaloid fagaronine is an inhibitor of DNA topoisomerases I and II,” Biochemical Pharmacology, vol. 46, no. 8, pp. 1403–1412, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Fleury, A. Sukhanova, A. Ianoul et al., “Molecular determinants of site-specific inhibition of human DNA topoisomerase I by fagaronine and ethoxidine. Relation to DNA binding,” The Journal of Biological Chemistry, vol. 275, no. 5, pp. 3501–3509, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Lapis, I. Kavalsky, and A. Jeney, “Alterations of glycosaminoglycans in human liver and kidney tumors,” The Tokai Journal of Experimental and Clinical Medicine, vol. 15, pp. 155–165, 1990. View at Google Scholar
  32. I. Kovalszky, G. Pogany, G. Molnar et al., “Altered glycosaminoglycan composition in reactive and neoplastic human liver,” Biochemical and Biophysical Research Communications, vol. 167, no. 3, pp. 883–890, 1990. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. Khorana, A. Sahni, O. D. Altland, and C. W. Francis, “Heparin inhibition of endothelial cell proliferation and organization is dependent on molecular weight,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 11, pp. 2110–2115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Fannon, K. E. Forsten, and M. A. Nugent, “Potentiation and inhibition of bFGF binding by heparin: a model for regulation of cellular response,” Biochemistry, vol. 39, no. 6, pp. 1434–1445, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Folkman, R. Langer, R. J. Linhardt, C. Haudenschild, and S. Taylor, “Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone,” Science, vol. 221, no. 4612, pp. 719–725, 1983. View at Publisher · View at Google Scholar · View at Scopus
  36. E. M. Stewart, X. Liu, G. M. Clark, R. M. I. Kapsa, and G. G. Wallace, “Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole,” Acta Biomaterialia, vol. 8, no. 1, pp. 194–200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Sasisekharan and G. Venkataraman, “Heparin and heparan sulfate: biosynthesis, structure and function,” Current Opinion in Chemical Biology, vol. 4, no. 6, pp. 626–631, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Liang, M. Häring, P. J. Roughley, R. K. Margolis, and R. U. Margolis, “Glypican and biglycan in the nuclei of neurons and glioma cells: presence of functional nuclear localization signals and dynamic changes in glypican during the cell cycle,” Journal of Cell Biology, vol. 139, no. 4, pp. 851–864, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Hsia, T. P. Richardson, and M. A. Nugent, “Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling,” Journal of Cellular Biochemistry, vol. 88, no. 6, pp. 1214–1225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Vlodavsky and Y. Friedmann, “Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis,” The Journal of Clinical Investigation, vol. 108, no. 3, pp. 341–347, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Vlodavsky, M. Elkin, G. Abboud-Jarrous et al., “Heparanase: one molecule with multiple functions in cancer progression,” Connective Tissue Research, vol. 49, no. 3-4, pp. 207–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. G. E. Bertolesi, H. Y. Su, G. Michaiel, S. M. Dueck, C. L. Hehr, and S. Mcfarlane, “Two promoters with distinct activities in different tissues drive the expression of heparanase in Xenopus,” Developmental Dynamics, vol. 240, no. 12, pp. 2657–2672, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Engelberg, “Actions of heparin that may affect the malignant process,” Cancer, vol. 85, pp. 257–272, 1999. View at Google Scholar
  44. K. Ishii, S. Futaki, H. Uchiyama, K. Nagasawa, and T. Andoh, “Mechanism of inhibition of mammalian DNA topoisomerase I by heparin,” Biochemical Journal, vol. 241, no. 1, pp. 111–119, 1987. View at Google Scholar · View at Scopus
  45. S. W. Warmann, J. Fuchs, L. Wilkens, K. F. Gratz, D. von Schweinitz, and H. Mildenberger, “Successful therapy of subcutaneously growing human hepatoblastoma xenografts with topotecan,” Medical and Pediatric Oncology, vol. 37, no. 5, pp. 449–454, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. K. W. McCrudden, A. Yokoi, A. Thosani et al., “Topotecan is anti-angiogenic in experimental hepatoblastoma,” Journal of Pediatric Surgery, vol. 37, no. 6, pp. 857–861, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Y. Lee, B.-S. Kim, Y. T. Seo et al., “Phase II study to topotecan and cisplatin in advanced hepatocellular carcinoma,” The Korean Journal of Internal Medicine, vol. 18, no. 2, pp. 104–108, 2003. View at Google Scholar · View at Scopus