Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

BioMed Research International
Volume 2014, Article ID 785039, 22 pages
http://dx.doi.org/10.1155/2014/785039
Review Article

A Survey of FDG- and Amyloid-PET Imaging in Dementia and GRADE Analysis

1Nuclear Medicine Department, Vita-Salute San Raffaele University, San Raffaele Hospital and Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
2Nuclear Medicine Department, University of Rome “Tor Vergata” and IRCCS Neuromed, 86077 Pozzilli, Italy
3Department of Medical and Experimental Sciences, Unit of Neurology, Brescia University, 25123 Brescia, Italy
4Department of Neuroscience Ophthalmology and Genetics, University of Genoa, 16132 Genoa, Italy
5IBFM-CNR, Via F.lli Cervi 93, Segrate, 20090 Milan, Italy
6IRCCS Centro San Giovanni di Dio Fatebenefratelli, and Memory Clinic and LANVIE, Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, 1225 Geneva, Switzerland
7University of Rome Tor Vergata and IRCSS S. Lucia, 00142 Rome, Italy

Received 10 October 2013; Accepted 29 January 2014; Published 19 March 2014

Academic Editor: Yong He

Copyright © 2014 Perani Daniela et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Jagust, B. Reed, D. Mungas, W. Ellis, and C. DeCarli, “What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia?” Neurology, vol. 69, no. 9, pp. 871–877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. L. K. Teune, A. L. Bartels, B. M. de Jong et al., “Typical cerebral metabolic patterns in neurodegenerative brain diseases,” Movement Disorders, vol. 25, no. 14, pp. 2395–2404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Berti, A. Pupi, and L. Mosconi, “PET/CT in diagnosis of dementia,” Annals of the New York Academy of Sciences, vol. 1228, no. 1, pp. 81–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Berti, A. Pupi, and L. Mosconi, “PET/CT in diagnosis of movement disorders,” Annals of the New York Academy of Sciences, vol. 1228, no. 1, pp. 93–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Dubois, H. H. Feldman, C. Jacova et al., “Revising the definition of Alzheimer's disease: a new lexicon,” The Lancet Neurology, vol. 9, no. 11, pp. 1118–1127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Albert, S. T. DeKosky, D. Dickson et al., “The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's & Dementia, vol. 7, no. 3, pp. 270–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. G. M. McKhann, D. S. Knopman, H. Chertkow et al., “The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's & Dementia, vol. 7, no. 3, pp. 263–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Sperling, P. S. Aisen, L. A. Beckett et al., “Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's & Dementia, vol. 7, no. 3, pp. 280–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Dubois, H. H. Feldman, C. Jacova et al., “Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria,” The Lancet Neurology, vol. 6, no. 8, pp. 734–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. H. S. Silverman, G. W. Small, C. Y. Chang et al., “Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome,” Journal of the American Medical Association, vol. 286, no. 17, pp. 2120–2127, 2001. View at Google Scholar · View at Scopus
  11. V. L. Villemagne, M. T. Fodero-Tavoletti, K. E. Pike, R. Cappai, C. L. Masters, and C. C. Rowe, “The ART of loss: Aβ imaging in the evaluation of Alzheimer's disease and other dementias,” Molecular Neurobiology, vol. 38, no. 1, pp. 1–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. V. L. Villemagne, K. Ong, R. S. Mulligan et al., “Amyloid imaging with 18F-florbetaben in Alzheimer disease and other dementias,” Journal of Nuclear Medicine, vol. 52, no. 8, pp. 1210–1217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Signorini, E. Paulesu, K. Friston et al., “Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping,” NeuroImage, vol. 9, no. 1, pp. 63–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Minoshima, K. A. Frey, R. A. Koeppe, N. L. Foster, and D. E. Kuhl, “A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET,” Journal of Nuclear Medicine, vol. 36, no. 7, pp. 1238–1248, 1995. View at Google Scholar · View at Scopus
  15. A. Caroli, A. Prestia, K. Chen et al., “Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison,” Journal of Nuclear Medicine, vol. 53, no. 4, pp. 592–600, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. N. I. Bohnen, D. S. W. Djang, K. Herholz, Y. Anzai, and S. Minoshima, “Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature,” Journal of Nuclear Medicine, vol. 53, no. 1, pp. 59–71, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Anchisi, B. Borroni, M. Franceschi et al., “Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease,” Archives of Neurology, vol. 62, no. 11, pp. 1728–1733, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow, and L. Minthon, “Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study,” The Lancet Neurology, vol. 5, no. 3, pp. 228–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Mosconi, R. Mistur, R. Switalski et al., “FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 5, pp. 811–822, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Yuan, Z.-X. Gu, and W.-S. Wei, “Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis,” American Journal of Neuroradiology, vol. 30, no. 2, pp. 404–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Okello, J. Koivunen, P. Edison et al., “Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study,” Neurology, vol. 73, no. 10, pp. 754–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Nordberg, S. F. Carter, J. Rinne et al., “A European multicentre PET study of fibrillar amyloid in Alzheimer's disease,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 40, no. 1, pp. 104–114, 2013. View at Publisher · View at Google Scholar
  23. A. Prestia, A. Caroli, W. M. van der Flier et al., “Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease,” Neurology, vol. 80, no. 11, pp. 1048–1056, 2013. View at Publisher · View at Google Scholar
  24. J. L. Cummings, “Biomarkers in Alzheimer's disease drug development,” Alzheimer's & Dementia, vol. 7, no. 3, pp. e13–e44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ng, V. L. Villemagne, S. Berlangieri et al., “Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease,” Journal of Nuclear Medicine, vol. 48, no. 4, pp. 547–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. D. Cohen, W. Mowrey, L. A. Weissfeld et al., “Classification of amyloid-positivity in controls: comparison of visual read and quantitative approaches,” Neuroimage, vol. 71, pp. 207–215, 2013. View at Publisher · View at Google Scholar
  27. K. Herholz, E. Salmon, D. Perani et al., “Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET,” NeuroImage, vol. 17, no. 1, pp. 302–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Edison, D. J. Brooks, F. E. Turkheimer, H. A. Archer, and R. Hinz, “Strategies for the generation of parametric images of [11C]PIB with plasma input functions considering discriminations and reproducibility,” NeuroImage, vol. 48, no. 2, pp. 329–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Camus, P. Payoux, L. Barré et al., “Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 4, pp. 621–631, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Wiley, B. J. Lopresti, S. Venneti et al., “Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease,” Archives of Neurology, vol. 66, no. 1, pp. 60–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Chételat, V. L. Villemagne, N. Villain et al., “Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition,” Neurology, vol. 78, no. 7, pp. 477–484, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Bateman, C. Xiong, T. Benzinger et al., “Erratum in “clinical and biomarker changes in dominantly inherited Alzheimer's disease’,” The New England Journal of Medicine, vol. 367, no. 8, article 780, 2012. View at Google Scholar
  33. N. L. Foster, J. L. Heidebrink, C. M. Clark et al., “FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease,” Brain, vol. 130, part 10, pp. 2616–2635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. G. D. Rabinovici, H. J. Rosen, A. Alkalay et al., “Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD,” Neurology, vol. 77, no. 23, pp. 2034–2042, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J. C. Patterson, D. L. Lilien, A. Takalkar, and J. B. Pinkston, “Early detection of brain pathology suggestive of early AD using objective evaluation of FDG-PET scans,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 946590, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Attwell and C. Iadecola, “The neural basis of functional brain imaging signals,” Trends in Neurosciences, vol. 25, no. 12, pp. 621–625, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. de Leon, S. H. Ferris, and A. E. George, “Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer's disease,” Journal of Cerebral Blood Flow and Metabolism, vol. 3, no. 3, pp. 391–394, 1983. View at Google Scholar · View at Scopus
  38. D. E. Kuhl, “Imaging local brain function with emission computed tomography,” Radiology, vol. 150, no. 3, pp. 625–631, 1984. View at Google Scholar · View at Scopus
  39. M. J. de Leon, A. Convit, O. T. Wolf et al., “Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET),” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10966–10971, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. S. de Santi, M. J. de Leon, H. Rusinek et al., “Hippocampal formation glucose metabolism and volume losses in MCI and AD,” Neurobiology of Aging, vol. 22, no. 4, pp. 529–539, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Mosconi, “Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease: FDG-PET studies in MCI and AD,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 4, pp. 486–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Minoshima, N. L. Foster, A. A. Sima, K. A. Frey, R. L. Albin, and D. E. Kuhl, “Alzheimer's disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation,” Annals of Neurology, vol. 50, no. 3, pp. 358–365, 2001. View at Publisher · View at Google Scholar
  43. S. Morbelli, A. Piccardo, G. Villavecchia et al., “Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 1, pp. 36–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. Shaffer, J. R. Petrella, F. C. Sheldon et al., “Predicting cognitive decline in subject at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging and PET biomarkers,” Radiology, vol. 266, no. 2, pp. 583–591, 2013. View at Publisher · View at Google Scholar
  45. C. Hinrichs, V. Singh, G. Xu, and S. C. Johnson, “Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population,” NeuroImage, vol. 55, no. 2, pp. 574–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. K. B. Walhovd, A. M. Fjell, J. Brewer et al., “Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease,” American Journal of Neuroradiology, vol. 31, no. 2, pp. 347–354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Chételat, V. L. Villemagne, P. Bourgeat et al., “Relationship between atrophy and β-amyloid deposition in Alzheimer disease,” Annals of Neurology, vol. 67, no. 3, pp. 317–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. R. J. Castellani and M. A. Smith, “Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is “too big to fail’,” Journal of Pathology, vol. 224, no. 2, pp. 147–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. C. C. Rowe and V. L. Villemagne, “Brain amyloid imaging,” Journal of Nuclear Medicine, vol. 52, no. 11, pp. 1733–1740, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. C. A. Mathis, B. J. Bacskai, S. T. Kajdasz et al., “A lipophilic thioflavin-T derivative for Positron Emission Tomography (PET) imaging of amyloid in brain,” Bioorganic and Medicinal Chemistry Letters, vol. 12, no. 3, pp. 295–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. W. E. Klunk, H. Engler, A. Nordberg et al., “Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B,” Annals of Neurology, vol. 55, no. 3, pp. 306–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Lockhart, J. R. Lamb, T. Osredkar et al., “PIB is a non-specific imaging marker of amyloid-beta (Aβ) peptide-related cerebral amyloidosis,” Brain, vol. 130, no. 10, pp. 2607–2615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. V. Leinonen, I. Alafuzoff, S. Aalto et al., “Assessment of β-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled pittsburgh Compound B,” Archives of Neurology, vol. 65, no. 10, pp. 1304–1309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. V. J. Lowe, B. J. Kemp, C. R. Jack Jr. et al., “Comparison of 18F-FDG and PiB PET in cognitive impairment,” Journal of Nuclear Medicine, vol. 50, no. 6, pp. 878–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. D. P. Devanand, A. Mikhno, G. H. Pelton et al., “Pittsburgh Compound B (11C-PIB) and fluorodeoxyglucose (18F-FDG) PET in patients with Alzheimer disease, mild cognitive impairment, and healthy controls,” Journal of Geriatric Psychiatry and Neurology, vol. 23, no. 3, pp. 185–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. P. T. Meyer, S. Hellwig, F. Amtage et al., “Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-Labeled Pittsburgh Compound B,” Journal of Nuclear Medicine, vol. 52, no. 3, pp. 393–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. H. Rostomian, C. Madison, G. D. Rabinovici, and W. J. Jagust, “Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients,” Journal of Nuclear Medicine, vol. 52, no. 2, pp. 173–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Kadir, O. Almkvist, A. Forsberg et al., “Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease,” Neurobiology of Aging, vol. 33, no. 1, pp. 198.e1–198.e14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Kadir, N. Andreasen, O. Almkvist et al., “Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer's disease,” Annals of Neurology, vol. 63, no. 5, pp. 621–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Forsberg, H. Engler, O. Almkvist et al., “PET imaging of amyloid deposition in patients with mild cognitive impairment,” Neurobiology of Aging, vol. 29, no. 10, pp. 1456–1465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Koivunen, N. Scheinin, J. R. Virta et al., “Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study,” Neurology, vol. 76, no. 12, pp. 1085–1090, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. B. J. Lopresti, W. E. Klunk, C. A. Mathis et al., “Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis,” Journal of Nuclear Medicine, vol. 46, no. 12, pp. 1959–1972, 2005. View at Google Scholar · View at Scopus
  64. B. L. Rosario, L. A. Weissfeld, C. M. Laymon et al., “Inter-rater reliability of manual and automated region-of-interest delineation for PiB PET,” NeuroImage, vol. 55, no. 3, pp. 933–941, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Zhou, J. Sojkova, S. M. Resnick, and D. F. Wong, “Relative equilibrium plot improves graphical analysis and allows bias correction of standardized uptake value ratio in quantitative 11C-PiB PET studies,” Journal of Nuclear Medicine, vol. 53, no. 4, pp. 622–628, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Edison, R. Hinz, A. Ramlackhansingh et al., “Can target-to-pons ratio be used as a reliable method for the analysis of [11C]PIB brain scans?” NeuroImage, vol. 60, no. 3, pp. 1716–1723, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Vallabhajosula, “Positron emission tomography radiopharmaceuticals for imaging brain beta-amyloid,” Seminars in Nuclear Medicine, vol. 41, no. 4, pp. 283–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Herholz and K. Ebmeier, “Clinical amyloid imaging in Alzheimer's disease,” The Lancet Neurology, vol. 10, no. 7, pp. 667–670, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. C. M. Clark, J. A. Schneider, B. J. Bedell et al., “Use of florbetapir-PET for imaging β-amyloid pathology,” Journal of the American Medical Association, vol. 305, no. 3, pp. 275–283, 2011, Erratum in Journal of the American Medical Association, vol. 305, no. 11, article 1096, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. A. S. Fleisher, K. Chen, X. Liu et al., “Using positron emission tomography and florbetapir F 18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease,” Archives of Neurology, vol. 68, no. 11, pp. 1404–1411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. S. M. Landau, C. Breault, A. D. Joshi et al., “Amyloid-β imaging with Pittsburgh Compound B and florbetapir: comparing radiotracers and quantification methods,” Journal of Nuclear Medicine, vol. 54, no. 1, pp. 70–77, 2013. View at Publisher · View at Google Scholar
  72. W. J. Jagust, S. M. Landau, L. M. Shaw et al., “Relationships between biomarkers in aging and dementia,” Neurology, vol. 73, no. 15, pp. 1193–1199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. A. D. Joshi, M. J. Pontecorvo, C. M. Clark et al., “Performance characteristics of amyloid PET with florbetapir F 18 in patients with Alzheimer's disease and cognitively normal subjects,” Journal of Nuclear Medicine, vol. 53, no. 3, pp. 378–384, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. J. L. Brozek, E. A. Akl, R. Jaeschke et al., “Grading quality of evidence and strength of recommendations in clinical practice guidelines: part 2 of 3. the GRADE approach to grading quality of evidence about diagnostic tests and strategies,” Allergy, vol. 64, no. 8, pp. 1109–1116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Hsu, J. L. Brozek, L. Terracciano et al., “Application of GRADE: making evidence-based recommendations about diagnostic tests in clinical practice guidelines,” Implementation Science, vol. 6, no. 1, article 62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. G. H. Guyatt, A. D. Oxman, R. Kunz et al., “GRADE guidelines: 7. Rating the quality of evidence-inconsistency,” Chinese Journal of Evidence-Based Medicine, vol. 11, no. 12, pp. 1444–1451, 2011. View at Google Scholar · View at Scopus
  77. H. J. Schünemann, A. D. Oxman, J. Brozek et al., “GRADE: grading quality of evidence and strength of recommendations for diagnostic tests and strategies,” BMJ, vol. 336, no. 7653, pp. 1106–1110, 2008. View at Google Scholar · View at Scopus
  78. G. B. Frisoni and K. Blennow, “Biomarkers for Alzheimer’s: the sequel of an original model,” The Lancet Neurology, vol. 12, no. 2, pp. 126–128, 2013. View at Publisher · View at Google Scholar
  79. E. Arnáiz, V. Jelic, O. Almkvist et al., “Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment,” NeuroReport, vol. 12, no. 4, pp. 851–855, 2001. View at Google Scholar · View at Scopus
  80. L. Mosconi, D. Perani, S. Sorbi et al., “MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET,” Neurology, vol. 63, no. 12, pp. 2332–2340, 2004. View at Google Scholar · View at Scopus
  81. D. C. Delis, J. Freeland, J. H. Kramer, and E. Kaplan, “Integrating clinical assessment with cognitive neuroscience: construct validation of the California Verbal Learning test,” Journal of Consulting and Clinical Psychology, vol. 56, no. 1, pp. 123–130, 1988. View at Google Scholar · View at Scopus
  82. A. Drzezga, T. Grimmer, M. Riemenschneider et al., “Prediction of individual clinical outcome in MCI by means of genetic assessment and 18F-FDG PET,” Journal of Nuclear Medicine, vol. 46, no. 10, pp. 1625–1632, 2005. View at Google Scholar · View at Scopus
  83. K. Hosaka, K. Ishii, S. Sakamoto et al., “Validation of anatomical standardization of FDG PET images of normal brain: comparison of SPM and NEUROSTAT,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 1, pp. 92–97, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Haense, K. Herholz, W. J. Jagust, and W. D. Heiss, “Performance of FDG PET for detection of Alzheimer's disease in two independent multicentre samples (NEST-DD and ADNI),” Dementia and Geriatric Cognitive Disorders, vol. 28, no. 3, pp. 259–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. S. M. Landau, D. Harvey, C. M. Madison et al., “Comparing predictors of conversion and decline in mild cognitive impairment,” Neurology, vol. 75, no. 3, pp. 230–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Brück, J. R. Virta, J. Koivunen et al., “[11C]PIB, [18F]FDG and MR imaging in patients with mild cognitive impairment,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 40, no. 10, pp. 1567–1572, 2013. View at Publisher · View at Google Scholar
  87. J. Arbizu, E. Prieto, P. Martínez-Lage et al., “Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 40, no. 9, pp. 1394–1405, 2013. View at Publisher · View at Google Scholar
  88. S. Gilman, R. A. Koeppe, R. Little et al., “Differentiation of Alzheimer's disease from dementia with Lewy bodies utilizing positron emission tomography with [18F]fluorodeoxyglucose and neuropsychological testing,” Experimental Neurology, vol. 191, supplement 1, pp. S95–S103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Mosconi, W. H. Tsui, K. Herholz et al., “Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias,” Journal of Nuclear Medicine, vol. 49, no. 3, pp. 390–398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. P. J. Magistretti, “Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling,” Brain Research, vol. 886, no. 1-2, pp. 108–112, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. G. B. Frisoni, “Alzheimer disease: biomarker trajectories across stages of Alzheimer disease,” Nature Reviews Neurology, vol. 8, pp. 299–300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers,” The Lancet Neurology, vol. 12, no. 2, pp. 207–216, 2013. View at Publisher · View at Google Scholar
  93. C. C. Rowe, U. Ackerman, W. Browne et al., “Imaging of amyloid β in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism,” The Lancet Neurology, vol. 7, no. 2, pp. 129–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Vandenberghe, K. van Laere, A. Ivanoiu et al., “18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment a phase 2 trial,” Annals of Neurology, vol. 68, no. 3, pp. 319–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. D. A. Wolk, I. D. Grachev, C. Buckley et al., “Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology,” Archives of Neurology, vol. 68, no. 11, pp. 1398–1403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Barthel, H. Gertz, S. Dresel et al., “Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study,” The Lancet Neurology, vol. 10, no. 5, pp. 424–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Barthel, J. Luthardt, G. Becker et al., “Individualized quantification of brain β-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 9, pp. 1702–1714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. V. L. Villemagne, R. S. Mulligan, S. Pejoska et al., “Comparison of 11C-PiB and 18F-florbetaben for Aβ imaging in ageing and Alzheimer's disease,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 6, pp. 983–989, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. G. A. Becker, M. Ichise, H. Barthel et al., “PET quantification of 18F-florbetaben binding to β-amyloid deposits in human brains,” Journal of Nuclear Medicine, vol. 54, no. 5, pp. 723–731, 2013. View at Publisher · View at Google Scholar
  100. A. Forsberg, O. Almkvist, H. Engler, A. Wall, B. Långström, and A. Nordberg, “High PIB retention in Alzheimer's disease is an early event with complex relationship with CSF biomarkers and functional parameters,” Current Alzheimer Research, vol. 7, no. 1, pp. 56–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. D. A. Wolk, J. C. Price, J. A. Saxton et al., “Amyloid imaging in mild cognitive impairment subtypes,” Annals of Neurology, vol. 65, no. 5, pp. 557–568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. C. M. Clark, M. J. Pontecorvo, T. G. Beach et al., “Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study,” The Lancet Neurology, vol. 11, no. 8, pp. 669–678, 2012. View at Publisher · View at Google Scholar
  103. A. Forsberg, H. Engler, G. Blomquist, B. Långström, and A. Nordberg, “The use of PIB-PET as a dual pathological and functional biomarker in AD,” Biochimica et Biophysica Acta, vol. 1822, no. 3, pp. 380–385, 2012. View at Publisher · View at Google Scholar
  104. H. Shao, N. Okamura, K. Sugi et al., “Voxel-based analysis of amyloid positron emission tomography probe [C]BF-227 uptake in mild cognitive impairment and Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 30, no. 2, pp. 101–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Waragai, N. Okamura, K. Furukawa et al., “Comparison study of amyloid PET and voxel-based morphometry analysis in mild cognitive impairment and Alzheimer's disease,” Journal of the Neurological Sciences, vol. 285, no. 1-2, pp. 100–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. C. R. Jack Jr., V. J. Lowe, M. L. Senjem et al., “11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment,” Brain, vol. 131, part 3, pp. 665–680, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. C. C. Rowe, K. A. Ellis, M. Rimajova et al., “Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging,” Neurobiology of Aging, vol. 31, no. 8, pp. 1275–1283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. E. C. Mormino, M. G. Brandel, C. M. Madison et al., “Not quite PIB-positive, not quite PIB-negative: slight PIB elevations in elderly normal control subjects are biologically relevant,” NeuroImage, vol. 59, no. 2, pp. 1152–1160, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. W. J. Jagust, D. Bandy, K. Chen et al., “The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core,” Alzheimer's & Dementia, vol. 6, no. 3, pp. 221–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. P. della Rosa, C. Cerami, A. Prestia et al., “Clinical validation of a grid-based SPM web tool for the automatic assessment of [18F]FDG PET brain metabolic abnormalities in single subjects (P03.106),” Neurology, vol. 78, article P03.106, 2012. View at Publisher · View at Google Scholar
  111. D. S. Knopman, S. T. DeKosky, J. L. Cummings et al., “Practice parameter: diagnosis of dementia (an evidence-based review): report of the quality standards subcommittee of the American Academy of Neurology,” Neurology, vol. 56, no. 9, pp. 1143–1153, 2001. View at Google Scholar · View at Scopus
  112. G. B. Frisoni, P. H. Scheltens, S. Galluzzi et al., “Neuroimaging tools to rate regional atrophy, subcortical cerebrovascular disease, and regional cerebral blood flow and metabolism: consensus paper of the EADC,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 74, no. 10, pp. 1371–1381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. R. J. Bateman, C. Xiong, T. Benzinger et al., “Clinical and biomarker changes in dominantly inherited Alzheimer's disease,” The New England Journal of Medicine, vol. 367, no. 8, pp. 795–804, 2012, Erratum in The New England Journal of Medicine, vol. 367, no. 8, article 780, 2012. View at Publisher · View at Google Scholar
  114. E. M. Reiman, K. Chen, G. E. Alexander et al., “Correlations between apolipoprotein E ε4 gene dose and brain-imaging measurements of regional hypometabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8299–8302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. Jeong, S. S. Cho, J. M. Park et al., “18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients,” Journal of Nuclear Medicine, vol. 46, no. 2, pp. 233–239, 2005. View at Google Scholar · View at Scopus
  116. E. Salmon, G. Garraux, X. Delbeuck et al., “Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia,” NeuroImage, vol. 20, no. 1, pp. 435–440, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. D. G. Clark, A. Charuvastra, B. L. Miller, J. S. Shapira, and M. F. Mendez, “Fluent versus nonfluent primary progressive aphasia: a comparison of clinical and functional neuroimaging features,” Brain and Language, vol. 94, no. 1, pp. 54–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 3, pp. 303–308, 1999, Erratum in Archives of Neurology, vol. 56, no. 6, article 760, 1999. View at Google Scholar · View at Scopus
  119. R. C. Petersen, R. Doody, A. Kurz et al., “Current concepts in mild cognitive impairment,” Archives of Neurology, vol. 58, no. 12, pp. 1985–1992, 2001. View at Google Scholar · View at Scopus
  120. D. J. Brooks, “Imaging amyloid in Parkinson's disease dementia and dementia with Lewy bodies with positron emission tomography,” Movement Disorders, vol. 24, supplement 2, pp. S742–S747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Weih, Ü. Degirmenci, S. Kreil et al., “Nuclear medicine diagnostic techniques in the era of pathophysiology-based csf biomarkers for Alzheimers disease,” Journal of Alzheimer's Disease, vol. 26, supplement 3, pp. 97–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. I. McKeith, J. O'Brien, Z. Walker et al., “Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study,” The Lancet Neurology, vol. 6, no. 4, pp. 305–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. H. Engler, A. Forsberg, O. Almkvist et al., “Two-year follow-up of amyloid deposition in patients with Alzheimer's disease,” Brain, vol. 129, no. 11, pp. 2856–2866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. T. Grimmer, M. Riemenschneider, H. Förstl et al., “Beta amyloid in Alzheimer's disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid,” Biological Psychiatry, vol. 65, no. 11, pp. 927–934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. N. Villain, G. Chételat, B. Grassiot et al., “Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer's disease: a Voxelwise PiB-PET Longitudinal study,” Brain, vol. 135, part 7, pp. 2126–2139, 2012. View at Publisher · View at Google Scholar
  126. M. A. Mintun, G. N. Larossa, Y. I. Sheline et al., “[11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease,” Neurology, vol. 67, no. 3, pp. 446–452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. A. S. Fleisher, K. Chen, Y. T. Quiroz et al., “Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study,” The Lancet Neurology, vol. 11, no. 12, pp. 1057–1065, 2012. View at Google Scholar
  128. V. L. Villemagne, S. Burnham, P. Bourgeat et al., “Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study,” The Lancet Neurology, vol. 12, no. 4, pp. 357–367, 2013. View at Google Scholar
  129. R. S. Briellmann, S. F. Berkovic, A. Syngeniotis, M. A. King, and G. D. Jackson, “Alzheimer's neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun study,” Annals of Neurology, vol. 51, no. 5, pp. 567–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Karlawish, “Addressing the ethical, policy, and social challenges of preclinical Alzheimer disease,” Neurology, vol. 77, no. 15, pp. 1487–1493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Drzezga, “Amyloid-plaque imaging in early and differential diagnosis of dementia,” Annals of Nuclear Medicine, vol. 24, no. 2, pp. 55–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. K. A. Johnson, S. Minoshima, N. I. Bohnen et al., “Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association,” Journal of Nuclear Medicine, vol. 54, no. 3, pp. 476–490, 2013. View at Publisher · View at Google Scholar
  133. K. A. Johnson, S. Minoshima, N. I. Bohnen et al., “Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education,” Alzheimer's & Dementia, vol. 9, no. 4, pp. e106–e109, 2013. View at Publisher · View at Google Scholar