Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 787924, 14 pages
http://dx.doi.org/10.1155/2014/787924
Research Article

Rosiglitazone Regulates Anti-Inflammation and Growth Inhibition via PTEN

1Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan 70101, Taiwan
2Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
3School of Public Health, Taipei Medical University, Taipei 11031, Taiwan
4Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
5Department of Nursing, Chung Hwa University of Medical Technology, No. 89, Wen-Hwa 1st Street, Jen-Te Hsiang, Tainan 71703, Taiwan
6Department of Gastroenterology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan

Received 7 June 2013; Revised 18 January 2014; Accepted 1 February 2014; Published 13 March 2014

Academic Editor: Kazim Husain

Copyright © 2014 Chiou-Feng Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Roman, “Peroxisome proliferator-activated receptor gamma and lung cancer biology: implications for therapy,” Journal of Investigative Medicine, vol. 56, no. 2, pp. 528–533, 2008. View at Google Scholar · View at Scopus
  2. J. R. Weng, C. Y. Chen, J. J. Pinzone, M. D. Ringel, and C. S. Chen, “Beyond peroxisome proliferator-activated receptor γ signaling: the multi-facets of the antitumor effect of thiazolidinediones,” Endocrine-Related Cancer, vol. 13, no. 2, pp. 401–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Ondrey, “Peroxisome proliferator-activated receptor γ pathway targeting in carcinogenesis: implications for chemoprevention,” Clinical Cancer Research, vol. 15, no. 1, pp. 2–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Q. Chen, I. J. Edwards, S. J. Kridel, T. Thornburg, and I. M. Berquin, “Dietary fat-gene interactions in cancer,” Cancer and Metastasis Reviews, vol. 26, no. 3-4, pp. 535–551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Shiojiri, K. Wada, A. Nakajima et al., “PPARγ ligands inhibit nitrotyrosine formation and inflammatory mediator expressions in adjuvant-induced rheumatoid arthritis mice,” European Journal of Pharmacology, vol. 448, no. 2-3, pp. 231–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. A. von Knethen, M. Soller, and B. Brüne, “Peroxisome proliferator-activated receptor γ (PPARγ) and sepsis,” Archivum Immunologiae et Therapiae Experimentalis, vol. 55, no. 1, pp. 19–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Celiński, A. Madro, B. Prozorow-Król et al., “Rosiglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ)-specific agonist, as a modulator in experimental acute pancreatitis,” Medical Science Monitor, vol. 15, no. 1, pp. BR21–BR29, 2009. View at Google Scholar · View at Scopus
  8. A. P. Woster and C. K. Combs, “Differential ability of a thiazolidinedione PPARγ agonist to attenuate cytokine secretion in primary microglia and macrophage-like cells,” Journal of Neurochemistry, vol. 103, no. 1, pp. 67–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Hong, B. Davis, N. Khatoon, S. F. Baker, and J. Brown, “PPARγ-dependent anti-inflammatory action of rosiglitazone in human monocytes: suppression of TNFα secretion is not mediated by PTEN regulation,” Biochemical and Biophysical Research Communications, vol. 303, no. 3, pp. 782–787, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Meier, R. Chicheportiche, C. E. Juge-Aubry, M. G. Dreyer, and J.-M. Dayer, “Regulation of the interleukin-1 receptor antagonist in THP-1 cells by ligands of the peroxisome proliferator-activated receptor γ,” Cytokine, vol. 18, no. 6, pp. 320–328, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Giri, R. Rattan, A. K. Singh, and I. Singh, “The 15-deoxy-δ12,14-prostaglandin J2 inhibits the inflammatory response in primary rat astrocytes via down-regulating multiple steps in phosphatidylinositol 3-kinase-akt-NF-κB-p300 pathway independent of peroxisome proliferator-activated receptor γ,” Journal of Immunology, vol. 173, no. 8, pp. 5196–5208, 2004. View at Google Scholar · View at Scopus
  12. J. Drzewoski, A. Drozdowska, and A. Śliwińska, “Do we have enough data to confirm the link between antidiabetic drug use and cancer development?” Polskie Archiwum Medycyny Wewnetrznej, vol. 121, no. 3, pp. 81–87, 2011. View at Google Scholar · View at Scopus
  13. T. Maehama and J. E. Dixon, “The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate,” Journal of Biological Chemistry, vol. 273, no. 22, pp. 13375–13378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. B. H. Jiang and L. Z. Liu, “Chapter 2 PI3K/PTEN signaling in angiogenesis and tumorigenesis,” Advances in Cancer Research, vol. 102, pp. 19–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Slattery, J. S. Herrick, A. Lundgreen, F. A. Fitzpatrick, K. Curtin, and R. K. Wolff, “Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1,” Carcinogenesis, vol. 31, no. 9, pp. 1604–1611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Slattery and F. A. Fitzpatrick, “Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology,” Cancer Prevention Research, vol. 2, no. 11, pp. 922–930, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. C. Gupta, D. Hevia, S. Patchva, B. Park, W. Koh, and B. B. Aggarwal, “Upsides and downsides of reactive oxygen species for Cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy,” Antioxidants and Redox Signaling, vol. 16, no. 11, pp. 1295–1322, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Patel, I. Pass, P. Coxon, C. P. Downes, S. A. Smith, and C. H. Macphee, “Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN,” Current Biology, vol. 11, no. 10, pp. 764–768, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Y. Lee, E. J. Kang, G. Y. Hur et al., “Peroxisome proliferator-activated receptor-γ inhibits cigarette smoke solution-induced mucin production in human airway epithelial (NCI-H292) cells,” American Journal of Physiology, vol. 291, no. 1, pp. L84–L90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. Lee, S. J. Park, P. H. Hwang et al., “PPAR-gamma modulates allergic inflammation through up-regulation of PTEN,” The FASEB Journal, vol. 19, no. 8, pp. 1033–1035, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Wei-guo, Y. Hui, L. Shan et al., “PPAR-γ agonist inhibits Ang II-induced activation of dendritic cells via the MAPK and NF-κB pathways,” Immunology and Cell Biology, vol. 88, no. 3, pp. 305–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Sánchez-Hidalgo, A. R. Martín, I. Villegas, and C. A. de la Lastra, “Rosiglitazone, a PPARγ ligand, modulates signal transduction pathways during the development of acute TNBS-induced colitis in rats,” European Journal of Pharmacology, vol. 562, no. 3, pp. 247–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Ji, H. Wang, F. Zhang, X. Li, X. Lu, and A. Shen, “PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways,” Inflammation Research, vol. 59, no. 11, pp. 921–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Xing, T. Xin, R. L. Hunter, and G. Bing, “Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/ Akt,” Journal of Neuroinflammation, vol. 5, article 4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Papageorgiou, N. Pitulis, P. Msaouel, P. Lembessis, and M. Koutsilieris, “The non-genomic crosstalk between PPAR-γ ligands and ERK1/2 in cancer cell lines,” Expert Opinion on Therapeutic Targets, vol. 11, no. 8, pp. 1071–1085, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. E. Teresi, S. M. Planchon, K. A. Waite, and C. Eng, “Regulation of the PTEN promoter by statins and SREBP,” Human Molecular Genetics, vol. 17, no. 7, pp. 919–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. W. K. Jung, I. S. Park, S. J. Park et al., “The 15-deoxy-Δ12,14-prostaglandin J2 inhibits LPS-stimulated AKT and NF-κB activation and suppresses interleukin-6 in osteoblast-like cells MC3T3E-1,” Life Sciences, vol. 85, no. 1-2, pp. 46–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. E. S. Musiek, L. Gao, G. L. Milne et al., “Cyclopentenone isoprostanes inhibit the inflammatory response in macrophages,” Journal of Biological Chemistry, vol. 280, no. 42, pp. 35562–35570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Vinciguerra and M. Foti, “PTEN at the crossroad of metabolic diseases and cancer in the liver,” Annals of Hepatology, vol. 7, no. 3, pp. 192–199, 2008. View at Google Scholar · View at Scopus
  30. P. D. Ray, B. W. Huang, and Y. Tsuji, “Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling,” Cellular Signalling, vol. 24, no. 5, pp. 981–990, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Trachootham, W. Lu, M. A. Ogasawara, N. Rivera-Del Valle, and P. Huang, “Redox regulation of cell survival,” Antioxidants and Redox Signaling, vol. 10, no. 8, pp. 1343–1374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. N. R. Leslie, D. Bennett, Y. E. Lindsay, H. Stewart, A. Gray, and C. P. Downes, “Redox regulation of PI 3-kinase signalling via inactivation of PTEN,” The EMBO Journal, vol. 22, no. 20, pp. 5501–5510, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. de Luca, F. Sanna, M. Sallese et al., “Methionine sulfoxide reductase A down-regulation in human breast cancer cells results in a more aggressive phenotype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18628–18633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. T. M. Covey, K. Edes, G. S. Coombs, D. M. Virshup, and F. A. Fitzpatrick, “Alkylation of the tumor suppressor PTEN activates Akt and β-catenin signaling: a mechanism linking inflammation and oxidative stress with cancer,” PLoS ONE, vol. 5, no. 10, Article ID e13545, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Furumoto, S. Brooks, A. Olivera et al., “Cutting edge: lentiviral short hairpin RNA silencing of PTEN in human mast cells reveals constitutive signals that promote cytokine secretion and cell survival,” Journal of Immunology, vol. 176, no. 9, pp. 5167–5171, 2006. View at Google Scholar · View at Scopus
  36. Y. Anezaki, S. Ohshima, H. Ishii et al., “Sex difference in the liver of hepatocyte-specific Pten-deficient mice: a model of nonalcoholic steatohepatitis,” Hepatology Research, vol. 39, no. 6, pp. 609–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Horie, A. Suzuki, E. Kataoka et al., “Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas,” Journal of Clinical Investigation, vol. 113, no. 12, pp. 1774–1783, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Günzl, K. Bauer, E. Hainzl et al., “Anti-inflammatory properties of the PI3K pathway are mediated by IL-10/DUSP regulation,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1259–1269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. C. Kim, Y. H. Lee, M. K. Yu et al., “Anti-inflammatory mechanism of PPARγ on LPS-induced pulp cells: role of the ROS removal activity,” Archives of Oral Biology, vol. 57, no. 4, pp. 392–400, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Hashimoto, B. J. Farrow, and B. M. Evers, “Activation and role of MAP kinases in 15d-PGJ2-induced apoptosis in the human pancreatic cancer cell line MIA PaCa-2,” Pancreas, vol. 28, no. 2, pp. 153–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. N. Jin, W. Y. Hwang, C. Jo, and G. V. Johnson, “Metabolic state determines sensitivity to cellular stress in Huntington disease: normalization by activation of PPARγ,” PLoS ONE, vol. 7, no. 1, Article ID e30406, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Wang, X. Lv, J. Shi, X. Hu, and Y. Du, “Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells,” Biomedical and Environmental Sciences, vol. 24, no. 4, pp. 391–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Martín, J. V. Pérez-Girón, R. Hernanz et al., “Peroxisome proliferator-activated receptor-γ activation reduces cyclooxygenase-2 expression in vascular smooth muscle cells from hypertensive rats by interfering with oxidative stress,” Journal of Hypertension, vol. 30, no. 2, pp. 315–326, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Q. Cao, X. L. Chen, Q. Wang et al., “Upregulation of PTEN involved in rosiglitazone-induced apoptosis in human hepatocellular carcinoma cells,” Acta Pharmacologica Sinica, vol. 28, no. 6, pp. 879–887, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Q. Cao, X. L. Wang, Q. Wang et al., “Rosiglitazone sensitizes hepatocellular carcinoma cell lines to 5-fluorouracil antitumor activity through activation of the PPARγ signaling pathway,” Acta Pharmacologica Sinica, vol. 30, no. 9, pp. 1316–1322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Schwab, V. Reynders, S. Loitsch et al., “PPARγ is involved in mesalazine-mediated induction of apoptosis and inhibition of cell growth in colon cancer cells,” Carcinogenesis, vol. 29, no. 7, pp. 1407–1414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Bren-Mattison, A. M. Meyer, V. van Putten et al., “Antitumorigenic effects of peroxisome proliferator-activated receptor-γ in non-small-cell lung cancer cells are mediated by suppression of cyclooxygenase-2 via inhibition of nuclear factor-κB,” Molecular Pharmacology, vol. 73, no. 3, pp. 709–717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Han and J. Roman, “Rosiglitazone suppresses human lung carcinoma cell growth through PPARγ-dependent and PPARγ-independent signal pathways,” Molecular Cancer Therapeutics, vol. 5, no. 2, pp. 430–437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Xiao, T. Yuan, W. Yao, and K. Liao, “3T3-L1 adipocyte apoptosis induced by thiazolidinediones is peroxisome proliferator-activated receptor-γ-dependent and mediated by the caspase-3-dependent apoptotic pathway,” FEBS Journal, vol. 277, no. 3, pp. 687–696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. R. E. Teresi, C. W. Shaiu, C. S. Chen, V. K. Chatterjee, K. A. Waite, and C. Eng, “Increased PTEN expression due to transcriptional activation of PPARγ by lovastatin and rosiglitazone,” International Journal of Cancer, vol. 118, no. 10, pp. 2390–2398, 2006. View at Publisher · View at Google Scholar · View at Scopus