Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 821513, 7 pages
http://dx.doi.org/10.1155/2014/821513
Review Article

The Effect of Intravenous Anesthetics on Ischemia-Reperfusion Injury

Karadeniz Technical University, Anesthesiology and Intensive Care Medicine, 61000 Trabzon, Turkey

Received 1 November 2013; Accepted 3 December 2013; Published 16 January 2014

Academic Editor: Engin Erturk

Copyright © 2014 Ahmet Eroglu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. McCord, “The evolution of free radicals and oxidative stress,” American Journal of Medicine, vol. 108, no. 8, pp. 652–659, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. D. L. Carden and D. N. Granger, “Pathophysiology of ischaemia-reperfusion injury,” The Journal of Pathology, vol. 190, no. 3, pp. 255–266, 2000. View at Google Scholar
  3. J. R. Klune and A. Tsung, “Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements,” Surgical Clinics of North America, vol. 90, no. 4, pp. 665–677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Fräßdorf, S. De Hert, and W. Schlack, “Anaesthesia and myocardial ischaemia/reperfusion injury,” British Journal of Anaesthesia, vol. 103, no. 1, pp. 89–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. E. J. Schultz and G. J. Gross, “Opioids and cardioprotection,” Pharmacology and Therapeutics, vol. 89, no. 2, pp. 123–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Eroglu, S. Saracoglu, E. Erturk, M. Kosucu, and S. Kerimoglu, “A comparison of intraarticular morphine and bupivacaine for pain control and outpatient status after an arthroscopic knee surgery under a low dose of spinal anaesthesia,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 18, no. 11, pp. 1487–1495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Eroglu, M. Solak, I. Ozen, and O. Aynaci, “Stress hormones during the wake-up test in scoliosis surgery,” Journal of Clinical Anesthesia, vol. 15, no. 1, pp. 15–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Eroglu, “A comparison of patient-controlled subacromial and i.v. analgesia after open acromioplasty surgery,” British Journal of Anaesthesia, vol. 96, no. 4, pp. 497–501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kakinohana, M. Marsala, C. Carter, J. K. Davison, and T. L. Yaksh, “Neuraxial morphine may trigger transient motor dysfunction after a noninjurious interval of spinal cord ischemia: a clinical and experimental study,” Anesthesiology, vol. 98, no. 4, pp. 862–870, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Shirasawa, M. Matsumoto, M. Yoshimura et al., “Does high-dose opioid anesthesia exacerbate ischemic spinal cord injury in rabbits?” Journal of Anesthesia, vol. 23, no. 2, pp. 242–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, G. T. Wong, K. Man, and M. G. Irwin, “Pretreatment with intrathecal or intravenous morphine attenuates hepatic ischaemia-reperfusion injury in normal and cirrhotic rat liver,” British Journal of Anaesthesia, vol. 109, no. 4, pp. 529–539, 2012. View at Google Scholar
  12. A. Eroglu, H. Uzunlar, and N. Erciyes, “Comparison of hypotensive epidural anesthesia and hypotensive total intravenous anesthesia on intraoperative blood loss during total hip replacement,” Journal of Clinical Anesthesia, vol. 17, no. 6, pp. 420–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. T. C. Wong, R. Li, L. L. Jiang, and M. G. Irwin, “Remifentanil post-conditioning attenuates cardiac ischemia-reperfusion injury via κ or δ opioid receptor activation,” Acta Anaesthesiologica Scandinavica, vol. 54, no. 4, pp. 510–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. S. Cho, I. Rudloff, P. J. Berger et al., “Remifentanil ameliorates intestinal ischemia-reperfusion injury,” BMC Gastroenterology, vol. 13, article 69, 2013. View at Google Scholar
  15. S. Jeong, S. J. Kim, C. Jeong et al., “Neuroprotective effects of remifentanil against transient focal cerebral ischemia in rats,” Journal of Neurosurgical Anesthesiology, vol. 24, no. 1, pp. 51–57, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Lessa and E. Tibiriçá, “Pharmacologic evidence for the involvement of central and peripheral opioid receptors in the cardioprotective effects of fentanyl,” Anesthesia and Analgesia, vol. 103, no. 4, pp. 815–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. S. Carollo, B. D. Nossaman, and U. Ramadhyani, “Dexmedetomidine: a review of clinical applications,” Current Opinion in Anaesthesiology, vol. 21, no. 4, pp. 457–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Tüfek, O. Tokgöz, I. Aliosmanoglu et al., “The protective effects of dexmedetomidine on the liver and remote organs against hepatic ischemia reperfusion injury in rats,” International Journal of Surgery, vol. 11, pp. 96–100, 2013. View at Google Scholar
  19. H. Yagmurdur, N. Ozcan, F. Dokumaci, K. Kilinc, F. Yilmaz, and H. Basar, “Dexmedetomidine reduces the ischemia-reperfusion injury markers during upper extremity surgery with tourniquet,” Journal of Hand Surgery, vol. 33, no. 6, pp. 941–947, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Bostankolu, H. Ayoglu, S. Yurtlu et al., “Dexmedetomidine did not reduce the effects of tourniquet-induced ischemia-reperfusion injury during general anesthesia,” Kaohsiung Journal of Medical Sciences, vol. 29, pp. 75–81, 2013. View at Google Scholar
  21. T. Nakano and H. Okamoto, “Dexmedetomidine-induced cerebral hypoperfusion exacerbates ischemic brain injury in rats,” Journal of Anesthesia, vol. 23, no. 3, pp. 378–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Eroglu, M. Solak, H. Uzunlar, and I. Ozen, “Midazolam versus Propofol anesthesia for vertebral column surgery with wake up tests,” Turk Anesteziyoloji ve Reanimasyon, vol. 27, no. 8, pp. 417–422, 1999. View at Google Scholar · View at Scopus
  23. Y. Gurkan, A. Eroglu, E. Kelsaka, H. Kursad, and A. Yilmazlar, “Anaesthesia for scoliosis surgery,” Turkish Journal of Anaesthesiology and Reanimation, vol. 41, pp. 88–97, 2013. View at Google Scholar
  24. C. Adembri, L. Venturi, A. Tani et al., “Neuroprotective effects of propofol in models of cerebral ischemia: Inhibition of mitochondrial swelling as a possible mechanism,” Anesthesiology, vol. 104, no. 1, pp. 80–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H.-J. Xi, T.-H. Zhang, T. Tao et al., “Propofol improved neurobehavioral outcome of cerebral ischemia-reperfusion rats by regulating Bcl-2 and Bax expression,” Brain Research, vol. 1410, pp. 24–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K.-C. Chan, C.-J. Lin, P.-H. Lee et al., “Propofol attenuates the decrease of dynamic compliance and water content in the lung by decreasing oxidative radicals released from the reperfused liver,” Anesthesia and Analgesia, vol. 107, no. 4, pp. 1284–1289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Budic, D. Pavlovic, G. Kocic et al., “Biomarkers of oxidative stress and endothelial dysfunction after tourniquet release in children,” Physiological Research, vol. 60, supplement 1, pp. S137–S145, 2011. View at Google Scholar · View at Scopus
  28. I. Vasileiou, K. Kalimeris, T. Nomikos et al., “Propofol prevents lung injury following intestinal ischemia-reperfusion,” Journal of Surgical Research, vol. 172, no. 1, pp. 146–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. F. J. Guzmán-De La Garza, C. R. Cámara-Lemarroy, R. G. Ballesteros-Elizondo, G. Alarcón-Galván, P. Cordero-Pérez, and N. E. Fernández-Garza, “Ketamine reduces intestinal injury and inflammatory cell infiltration after ischemia/reperfusion in rats,” Surgery Today, vol. 40, no. 11, pp. 1055–1062, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. C. Sloan, M. Rosenbaum, D. O'Rourke et al., “High doses of ketamine-xylazine anesthesia reduce cardiac ischemia-reperfusion injury in guinea pigs,” Journal of the American Association for Laboratory Animal Science, vol. 50, no. 3, pp. 349–354, 2011. View at Google Scholar · View at Scopus
  31. C. R. Cámara, F. J. Guzmán, E. A. Barrera et al., “Ketamine anesthesia reduces intestinal ischemia/reperfusion injury in rats,” World Journal of Gastroenterology, vol. 14, no. 33, pp. 5192–5196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Oksuz, N. Senoglu, A. Yasim et al., “Propofol with N-acetylcysteine reduces global myocardial ischemic reperfusion injury more than ketamine in a rat model,” Journal of Investigative Surgery, vol. 22, no. 5, pp. 348–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Dogan, M. F. Yuzbasioglu, E. B. Kurutas et al., “Thiopental improves renal ischemiareperfusion injury,” Renal Failure, vol. 32, no. 3, pp. 391–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Zorniak, K. Mitrega, S. Bialka, M. Porc, and T. F. Krzeminski, “Comparison of thiopental, urethane, and pentobarbital in the study of experimental cardiology in rats in vivo,” Journal of Cardiovascular Pharmacology, vol. 56, no. 1, pp. 38–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Ergün, S. Darendeli, S. Imrek, M. Kilinç, and H. Öksüz, “The comparison of the effects of anesthetic doses of ketamine, propofol, and etomidate on ischemia-reperfusion injury in skeletal muscle,” Fundamental and Clinical Pharmacology, vol. 24, no. 2, pp. 215–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Yuzer, M. F. Yuzbasioglu, H. Ciralik et al., “Effects of intravenous anesthetics on renal ischemia/reperfusion injury,” Renal Failure, vol. 31, no. 4, pp. 290–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Erturk, B. Cekic, S. Geze et al., “Comparison of the effect of propofol and N-acetyl cysteine in preventing ischaemia-reperfusion injury,” European Journal of Anaesthesiology, vol. 26, no. 4, pp. 279–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Harman, A. E. Hasturk, M. Yaman et al., “Neuroprotective effects of propofol, thiopental, etomidate, and midazolam in fetal rat brain in ischemia-reperfusion model,” Child's Nervous System, vol. 28, pp. 1055–1062, 2012. View at Google Scholar
  39. M. Aldakkak, D. F. Stowe, E. J. Lesnefsky, J. S. Heisner, Q. Chen, and A. K. S. Camara, “Modulation of mitochondrial bioenergetics in the isolated guinea pig beating heart by potassium and lidocaine cardioplegia: implications for cardioprotection,” Journal of Cardiovascular Pharmacology, vol. 54, no. 4, pp. 298–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. E.-H. Lee, H.-M. Lee, C.-H. Chung et al., “Impact of intravenous lidocaine on myocardial injury after off-pump coronary artery surgery,” British Journal of Anaesthesia, vol. 106, no. 4, pp. 487–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Ergün, H. Öksüz, Y. Atli, M. Kilinç, and S. Darendeli, “Ischemia-reperfusion injury in skeletal muscle: comparison of the effects of subanesthetic doses of ketamine, propofol, and etomidate,” Journal of Surgical Research, vol. 159, no. 1, pp. e1–e10, 2010. View at Publisher · View at Google Scholar · View at Scopus