Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 834087, 9 pages
http://dx.doi.org/10.1155/2014/834087
Research Article

Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

1Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
2Laboratory for Cytogenetics, Center for Genetic Counseling, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
3Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Chungli 32003, Taiwan
4Department of Computer Science and Engineering, Yuan Ze University, Chungli 32003, Taiwan
5Bioinformatics Core Laboratory, Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
6Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
7Department of Computer Science & Information Engineering, Tamkang University, New Taipei City 25137, Taiwan

Received 9 April 2014; Accepted 21 July 2014; Published 8 September 2014

Academic Editor: Tzong-Yi Lee

Copyright © 2014 Kuei-Fang Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.