Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 835269, 16 pages
http://dx.doi.org/10.1155/2014/835269
Research Article

Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

1Hannover Medical School, Institute for Neuroanatomy, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
2Institute for Multiphase Processes, Leibniz University Hannover, Callinstraße 36, 30167 Hannover, Germany
3Institute for Biophysics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
4Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany

Received 9 December 2013; Revised 22 January 2014; Accepted 10 February 2014; Published 9 April 2014

Academic Editor: Aijun Wang

Copyright © 2014 Sven Duda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Noble, C. A. Munro, V. S. Prasad, and R. Midha, “Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries,” Journal of Trauma, vol. 45, no. 1, pp. 116–122, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Eser, L. Aktekin, H. Bodur, and Ç. Atan, “Etiological factors of traumatic peripheral nerve injuries,” Neurology India, vol. 57, no. 4, pp. 434–437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. G. R. Evans, “Challenges to nerve regeneration,” Seminars in Surgical Oncology, vol. 19, pp. 312–318, 2000. View at Google Scholar
  4. U. Dornseifer, K. Matiasek, M. A. Fichter et al., “Surgical therapy of peripheral nerve lesions: current status and new perspectives,” Zentralblatt für Neurochirurgie, vol. 68, no. 3, pp. 101–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” Journal of the Royal Society Interface, vol. 9, no. 67, pp. 202–221, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Gu, F. Ding, Y. Yang, and J. Liu, “Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration,” Progress in Neurobiology, vol. 93, no. 2, pp. 204–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. B. Dahlin, “Techniques of peripheral nerve repair,” Scandinavian Surgical Society, vol. 97, pp. 310–316, 2008. View at Google Scholar
  8. A. Bozkurt, F. Lassner, D. O'Dey et al., “The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves,” Biomaterials, vol. 33, no. 5, pp. 1363–1375, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Yuan, P. Zhang, Y. Yang, X. Wang, and X. Gu, “The interaction of Schwann cells with chitosan membranes and fibers in vitro,” Biomaterials, vol. 25, no. 18, pp. 4273–4278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. H. Hsu, W. C. Kuo, Y. T. Chen et al., “New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy,” Acta Biomaterialia, vol. 9, no. 5, pp. 6606–6615, 2013. View at Publisher · View at Google Scholar
  11. Y.-G. Zhang, J.-H. Huang, X.-Y. Hu, Q.-S. Sheng, W. Zhao, and Z.-J. Luo, “Omentum-wrapped scaffold with longitudinally oriented micro-channels promotes axonal regeneration and motor functional recovery in rats,” PLoS ONE, vol. 6, no. 12, Article ID e29184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Haastert-Talini, S. Geuna, L. B. Dahlin et al., “Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects,” Biomaterials, vol. 34, pp. 9886–9904, 2013. View at Google Scholar
  13. X. Jiang, S. H. Lim, H.-Q. Mao, and S. Y. Chew, “Current applications and future perspectives of artificial nerve conduits,” Experimental Neurology, vol. 223, no. 1, pp. 86–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Schnell, K. Klinkhammer, S. Balzer et al., “Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend,” Biomaterials, vol. 28, no. 19, pp. 3012–3025, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. W. F. den Dunnen, B. van der Lei, J. M. Schakenraad et al., “Poly(DL-lactide-epsilon-caprolactone) nerve guides perform better than autologous nerve grafts,” Microsurgery, vol. 17, pp. 348–357, 1996. View at Google Scholar
  16. M. F. Meek, W. F. den Dunnen, J. M. Schakenraad, and P. H. Robinson, “Long-term evaluation of functional nerve recovery after reconstruction with a thin-walled biodegradable poly (DL-lactide-epsilon-caprolactone) nerve guide, using walking track analysis and electrostimulation tests,” Microsurgery, vol. 19, pp. 247–253, 1999. View at Google Scholar
  17. M. Kuberka, I. Heschel, B. Glasmacher, and G. Rau, “Preparation of collagen scaffolds and their applications in tissue engineering,” Biomedizinische Technik, vol. 47, supplement 1, pp. 485–487, 2002. View at Google Scholar · View at Scopus
  18. H. Schoof, L. Bruns, A. Fischer, I. Heschel, and G. Rau, “Dendritic ice morphology in unidirectionally solidified collagen suspensions,” Journal of Crystal Growth, vol. 209, no. 1, pp. 122–129, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Schoof, J. Apel, I. Heschel, and G. Rau, “Control of pore structure and size in freeze-dried collagen sponges,” Journal of Biomedical Materials Research, vol. 58, no. 4, pp. 352–357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kuberka, “Influence of seeding methods on cellular growth in 3D collagen scaffolds for Tissue Engineering,” Biomedical Technologist, vol. 49, p. 634, 2004. View at Google Scholar
  21. A. Petersen, G. Rau, and B. Glasmacher, “Reduction of primary freeze-drying time by electric field induced ice nucleus formation,” Heat and Mass Transfer, vol. 42, no. 10, pp. 929–938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ramakrishna, An Introduction to Electrospinning and Nanofibers, World Scientific, Singapore, 2005.
  23. A. L. Szentivanyi, H. Zernetsch, H. Menzel, and B. Glasmacher, “A review of developments in electrospinning technology: new opportunities for the design of artificial tissue structures,” International Journal of Artificial Organs, vol. 34, no. 10, pp. 986–997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. W. S. Rasband and ImageJ, U. S. National Institutes of Health, Bethesda, Md, USA. ImageJ, 1997.
  25. R. Schmitte, A. Tipold, V. M. Stein et al., “Genetically modified canine Schwann cells-In vitro and in vivo evaluation of their suitability for peripheral nerve tissue engineering,” Journal of Neuroscience Methods, vol. 186, no. 2, pp. 202–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Bozkurt, S. E. Dunda, D. M. O'Dey, G. A. Brook, C. V. Suschek, and N. Pallua, “Epineurial sheath tube (EST) technique: an experimental peripheral nerve repair model,” Neurological Research, vol. 33, no. 10, pp. 1010–1015, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. D. Dijkstra, E. A. Döpp, P. Joling, and G. Kraal, “The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3,” Immunology, vol. 54, no. 3, pp. 589–599, 1985. View at Google Scholar · View at Scopus
  28. S. Lee and J. Zhang, “Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages,” Brain, Behavior, and Immunity, vol. 26, pp. 891–903, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. L. B. Siconolfi and N. W. Seeds, “Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush,” Journal of Neuroscience, vol. 21, no. 12, pp. 4348–4355, 2001. View at Google Scholar · View at Scopus
  30. K. Haastert-Talini, J. Schaper-Rinkel, R. Schmitte et al., “In vivo evaluation of polysialic acid as part of tissue-engineered nerve transplants,” Tissue Engineering A, vol. 16, no. 10, pp. 3085–3098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Bervar, “Video analysis of standing—an alternative footprint analysis to assess functional loss following injury to the rat sciatic nerve,” Journal of Neuroscience Methods, vol. 102, no. 2, pp. 109–116, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Korte, H. C. Schenk, C. Grothe, A. Tipold, and K. Haastert-Talini, “Evaluation of periodic electrodiagnostic measurements to monitor motor recovery after different peripheral nerve lesions in the rat,” Muscle and Nerve, vol. 44, no. 1, pp. 63–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Bozkurt, S. Tholl, S. Wehner et al., “Evaluation of functional nerve recovery with Visual-SSI-A novel computerized approach for the assessment of the static sciatic index (SSI),” Journal of Neuroscience Methods, vol. 170, no. 1, pp. 117–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Rupp, U. Dornseifer, A. Fischer et al., “Electrophysiologic assessment of sciatic nerve regeneration in the rat: surrounding limb muscles feature strongly in recordings from the gastrocnemius muscle,” Journal of Neuroscience Methods, vol. 166, no. 2, pp. 266–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Kuntzer, G. van Melle, and F. Regli, “Clinical and prognostic features in unilateral femoral neuropathies,” Muscle & Nerve, vol. 20, pp. 205–211, 1997. View at Google Scholar
  36. P. A. Cuddon, “Electrophysiology in neuromuscular disease,” Veterinary Clinics of North America—Small Animal Practice, vol. 32, no. 1, pp. 31–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Haastert, H. Joswig, K.-A. Jäschke, M. Samii, and C. Grothe, “Nerve repair by end-to-side nerve coaptation: histologic and morphometric evaluation of axonal origin in a rat sciatic nerve model,” Neurosurgery, vol. 66, no. 3, pp. 567–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Geuna, D. Gigo-Benato, and A. de Castro Rodrigues, “On sampling and sampling errors in histomorphometry of peripheral nerve fibers,” Microsurgery, vol. 24, no. 1, pp. 72–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Geuna, P. Tos, B. Battiston, and R. Guglielmone, “Verification of the two-dimensional disector, a method for the unbiased estimation of density and number of myelinated nerve fibers in peripheral nerves,” Annals of Anatomy, vol. 182, no. 1, pp. 23–34, 2000. View at Google Scholar · View at Scopus
  40. C. L. A. M. Vleggeert-Lankamp, “The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. Laboratory investigation,” Journal of Neurosurgery, vol. 107, no. 6, pp. 1168–1189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. L. de Medinaceli, W. J. Freed, and R. J. Wyatt, “An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks,” Experimental Neurology, vol. 77, no. 3, pp. 634–643, 1982. View at Google Scholar · View at Scopus
  42. L. J. Chamberlain, I. V. Yannas, H.-P. Hsu, G. Strichartz, and M. Spector, “Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft,” Experimental Neurology, vol. 154, no. 2, pp. 315–329, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Seminars in Immunology, vol. 20, no. 2, pp. 86–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. F. Meek and W. F. A. den Dunnen, “Porosity of the wall of a Neurolac nerve conduit hampers nerve regeneration,” Microsurgery, vol. 29, no. 6, pp. 473–478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. W. F. den Dunnen, P. H. Robinson, R. van Wessel, A. J. Pennings, M. B. van Leeuwen, and J. M. Schakenraad, “Long-term evaluation of degradation and foreign-body reaction of subcutaneously implanted poly(DL-lactide-epsilon-caprolactone),” Journal of Biomedical Materials Research, vol. 36, pp. 337–346, 1997. View at Google Scholar
  46. P. Hernández-Cortés, G. Juan, M. Cámara, and F. O. Ravassa, “Failed digital nerve reconstruction by foreign body reaction to Neurolac: nerve conduit,” Microsurgery, vol. 30, no. 5, pp. 414–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. K. Dash and V. B. Konkimalla, “Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review,” Journal of Controlled Release, vol. 158, pp. 15–33, 2012. View at Publisher · View at Google Scholar
  48. C. L. A. M. Vleggeert-Lankamp, G. C. W. de Ruiter, J. F. C. Wolfs et al., “Pores in synthetic nerve conduits are beneficial to regeneration,” Journal of Biomedical Materials Research A, vol. 80, no. 4, pp. 965–982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. R. J. Podhajsky and R. R. Myers, “The vascular response to nerve transection: neovascularization in the silicone nerve regeneration chamber,” Brain Research, vol. 662, no. 1-2, pp. 88–94, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Devor, D. Schonfeld, Z. Seltzer, and P. D. Wall, “Two modes of cutaneous reinnervation following peripheral nerve injury,” Journal of Comparative Neurology, vol. 185, no. 1, pp. 211–220, 1979. View at Google Scholar · View at Scopus
  51. L. J. Chamberlain, I. V. Yannas, H. P. Hsu, G. R. Strichartz, and M. Spector, “Near-terminus axonal structure and function following rat sciatic nerve regeneration through a collagen-GAG matrix in a ten-millimeter gap,” Journal of Neuroscience Research, vol. 60, pp. 666–677, 2000. View at Google Scholar
  52. E. R. Arbuthnott, I. A. Boyd, and K. U. Kalu, “Ultrastructural dimensions of myelinated peripheral nerve fibres in the cat and their relation to conduction velocity,” Journal of Physiology, vol. 308, pp. 125–157, 1980. View at Google Scholar · View at Scopus
  53. J. T. Aitken, “The effect of peripheral connexions on the maturation of regenerating,” Journal of Anatomy, vol. 83, no. 1, pp. 32–43, 1949. View at Google Scholar · View at Scopus