Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 857504, 13 pages
http://dx.doi.org/10.1155/2014/857504
Research Article

Role of Plasma Membrane Caveolae/Lipid Rafts in VEGF-Induced Redox Signaling in Human Leukemia Cells

1Department of Clinical and Experimental Medicine, University of Ferrara, Via Fossato di Mortara 66, 44121 Ferrara, Italy
2Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
3Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, C.so Augusto 237, 47921 Rimini, Italy

Received 15 November 2013; Accepted 21 January 2014; Published 11 March 2014

Academic Editor: Cristina Angeloni

Copyright © 2014 Cristiana Caliceti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Simons and R. Ehehalt, “Cholesterol, lipid rafts, and disease,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 597–603, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Allen, R. A. Halverson-Tamboli, and M. M. Rasenick, “Lipid raft microdomains and neurotransmitter signalling,” Nature Reviews Neuroscience, vol. 8, no. 2, pp. 128–140, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. A. Insel, B. P. Head, R. S. Ostrom et al., “Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes,” Annals of the New York Academy of Sciences, vol. 1047, pp. 166–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. E. J. Smart and R. G. W. Anderson, “Alterations in membrane cholesterol that affect structure and function of caveolae,” Methods in Enzymology, vol. 353, pp. 131–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. L. J. Pike, “Lipid rafts: bringing order to chaos,” Journal of Lipid Research, vol. 44, no. 4, pp. 655–667, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. R. G. Parton and M. A. del Pozo, “Caveolae as plasma membrane sensors, protectors and organizers,” Nature Reviews Molecular Cell Biology, vol. 14, no. 2, pp. 98–112, 2013. View at Google Scholar
  7. L. Labrecque, I. Royal, D. S. Surprenant, C. Patterson, D. Gingras, and R. Béliveau, “Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol,” Molecular Biology of the Cell, vol. 14, no. 1, pp. 334–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. G. Goetz, P. Lajoie, S. M. Wiseman, and I. R. Nabi, “Caveolin-1 in tumor progression: the good, the bad and the ugly,” Cancer and Metastasis Reviews, vol. 27, no. 4, pp. 715–735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X. . Zhao, Y. He, J. Gao et al., “Caveolin-1 expression level in cancer associated fibroblasts predicts outcome in gastric cancer,” PLoS One, vol. 8, no. 3, Article ID e59102, 2013. View at Google Scholar
  10. M. Ushio-Fukai, “VEGF signaling through NADPH oxidase-derived ROS,” Antioxidants and Redox Signaling, vol. 9, no. 6, pp. 731–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Matsumoto and H. Mugishima, “Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis,” Journal of Atherosclerosis and Thrombosis, vol. 13, no. 3, pp. 130–135, 2006. View at Google Scholar · View at Scopus
  12. K. Choi, M. Kennedy, A. Kazarov, J. C. Papadimitriou, and G. Keller, “A common precursor for hematopoietic and endothelial cells,” Development, vol. 125, no. 4, pp. 725–732, 1998. View at Google Scholar · View at Scopus
  13. T. S. Park, L. Zimmerlin, and E. T. Zambidis, “Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells,” Cytometry A, vol. 83, no. 1, pp. 114–126, 2012. View at Google Scholar
  14. A. R. Perez-Atayde, S. E. Sallan, U. Tedrow, S. Connors, E. Allred, and J. Folkman, “Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia,” American Journal of Pathology, vol. 150, no. 3, pp. 815–821, 1997. View at Google Scholar · View at Scopus
  15. A. Tzankov, M. Medinger, and N. Fischer, “Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies,” Journal of Oncology, vol. 2013, Article ID 729725, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Aguayo, H. M. Kantarjian, E. H. Estey et al., “Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes,” Cancer, vol. 95, no. 9, pp. 1923–1930, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Song, Y. Li, and G. Jiang, “Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (review),” Oncology Reports, vol. 28, no. 6, pp. 1935–1944, 2012. View at Google Scholar
  18. M. E. . Irwin, N. Rivera-Del Valle, and J. Chandra, “Redox control of leukemia: from molecular mechanisms to therapeutic opportunities,” Antioxidants & Redox Signaling, vol. 18, no. 11, pp. 1349–1383, 2012. View at Google Scholar
  19. L. Bonsi, L. Pierdomenico, M. Biscardi et al., “Constitutive and stimulated production of VEGF by human megakaryoblastic cell lines: effect on proliferation and signaling pathway,” International Journal of Immunopathology and Pharmacology, vol. 18, no. 3, pp. 445–455, 2005. View at Google Scholar · View at Scopus
  20. C. Prata, T. Maraldi, D. Fiorentini, L. Zambonin, G. Hakim, and L. Landi, “Nox-generated ROS modulate glucose uptake in a leukaemic cell line,” Free Radical Research, vol. 42, no. 5, pp. 405–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Maraldi, C. Prata, C. Caliceti et al., “VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis,” International Journal of Oncology, vol. 36, no. 6, pp. 1581–1589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Zidovetzki and I. Levitan, “Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies,” Biochimica et Biophysica Acta, vol. 1768, no. 6, pp. 1311–1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Maraldi, D. Fiorentini, C. Prata, L. Landi, and G. Hakim, “Glucose-transport regulation in leukemic cells: How can H2O2 mimic stem cell factor effects?” Antioxidants and Redox Signaling, vol. 9, no. 2, pp. 271–279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Caliceti, L. Zambonin, C. Prata et al., “Effect of plasma membrane cholesterol depletion on glucose transport regulation in leukemia cells,” PLoS One, vol. 7, no. 7, Article ID e41246, 2012. View at Google Scholar
  25. D. A. Brown, “Analysis of raft affinity of membrane proteins by detergent-insolubility,” Methods in Molecular Biology, vol. 398, pp. 9–20, 2007. View at Google Scholar · View at Scopus
  26. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  27. T. Maraldi, M. Rugolo, D. Fiorentini, L. Landi, and G. Hakim, “Glucose transport activation in human hematopoietic cells M07e is modulated by cytosolic calcium and calmodulin,” Cell Calcium, vol. 40, no. 4, pp. 373–381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Pitha, T. Irie, P. B. Sklar, and J. S. Nye, “Drug solubilizers to aid pharmacologists: amorphous cyclodextrin derivatives,” Life Sciences, vol. 43, no. 6, pp. 493–502, 1988. View at Google Scholar · View at Scopus
  29. Y. Ohtani, T. Irie, K. Uekama, K. Fukunaga, and J. Pitha, “Differential effects of α-, β- and γ-cyclodextrins on human erythrocytes,” European Journal of Biochemistry, vol. 186, no. 1-2, pp. 17–22, 1989. View at Publisher · View at Google Scholar · View at Scopus
  30. E. P. C. Kilsdonk, P. G. Yancey, G. W. Stoudt et al., “Cellular cholesterol efflux mediated by cyclodextrins,” The Journal of Biological Chemistry, vol. 270, no. 29, pp. 17250–17256, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. U. Klein, G. Gimpl, and F. Fahrenholz, “Alteration of the myometrial plasma membrane cholesterol content with β-cyclodextrin modulates the binding affinity of the oxytocin receptor,” Biochemistry, vol. 34, no. 42, pp. 13784–13793, 1995. View at Google Scholar · View at Scopus
  32. A. E. Christian, M. P. Haynes, M. C. Phillips, and G. H. Rothblat, “Use of cyclodextrins for manipulating cellular cholesterol content,” Journal of Lipid Research, vol. 38, no. 11, pp. 2264–2272, 1997. View at Google Scholar · View at Scopus
  33. K. Barnes, J. C. Ingram, M. D. M. Bennett, G. W. Stewart, and S. A. Baldwin, “Methyl-β-cyclodextrin stimulates glucose uptake in Clone 9 cells: a possible role for lipid rafts,” Biochemical Journal, vol. 378, part 2, pp. 343–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Gaus, E. Chklovskaia, B. Fazekas De St. Groth, W. Jessup, and T. Harder, “Condensation of the plasma membrane at the site of T lymphocyte activation,” Journal of Cell Biology, vol. 171, no. 1, pp. 121–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. . Yang, Y. Zhang, Z. Cao et al., “Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 29, pp. 12018–12023, 2013. View at Google Scholar
  36. J. Couet, S. Li, T. Okamoto, T. Ikezu, and M. P. Lisanti, “Identification of peptide and protein ligands for the caveolin- scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins,” The Journal of Biological Chemistry, vol. 272, no. 10, pp. 6525–6533, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Vajkoczy, M. D. Menger, B. Vollmar et al., “Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy,” Neoplasia, vol. 1, no. 1, pp. 31–41, 1999. View at Google Scholar · View at Scopus
  38. M. Ushio-Fukai, L. Zuo, S. Ikeda, T. Tojo, N. A. Patrushev, and R. W. Alexander, “cAbl tyrosine kinase mediates reactive oxygen species- and caveolin-dependent AT1 receptor signaling in vascular smooth muscle: role in vascular hypertrophy,” Circulation Research, vol. 97, no. 8, pp. 829–836, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. L. L. Hilenski, R. E. Clempus, M. T. Quinn, J. D. Lambeth, and K. K. Griendling, “Distinct Subcellular Localizations of Nox1 and Nox4 in Vascular Smooth Muscle Cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 4, pp. 677–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Ushio-Fukai and Y. Nakamura, “Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy,” Cancer Letters, vol. 266, no. 1, pp. 37–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. K. S. George and S. Wu, “Lipid raft: a floating island of death or survival,” Toxicology and Applied Pharmacology, vol. 259, no. 3, pp. 311–319, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. P.-L. Li and E. Gulbins, “Lipid rafts and redox signaling,” Antioxidants and Redox Signaling, vol. 9, no. 9, pp. 1411–1415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. H. Patel and P. A. Insel, “Lipid rafts and caveolae and their role in compartmentation of redox signaling,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1357–1372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Yang, T. N. Oo, and V. Rizzo, “Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells,” The FASEB Journal, vol. 20, no. 9, pp. E688–E697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Oshikawa, S.-J. Kim, E. Furuta et al., “Novel role of p66shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 302, no. 3, pp. H724–H732, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Oshikawa, N. Urao, H. W. Kim et al., “Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice,” PLoS ONE, vol. 5, no. 4, Article ID e10189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. A. Tahir, S. Park, and T. C. Thompson, “Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells,” Cancer Biology and Therapy, vol. 8, no. 23, pp. 2286–2296, 2009. View at Google Scholar · View at Scopus
  48. M. Ushio-Fukai, “Compartmentalization of redox signaling through NaDPH oxidase-derived ROS,” Antioxidants and Redox Signaling, vol. 11, no. 6, pp. 1289–1299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Saulle, R. Riccioni, S. Coppola et al., “Colocalization of the VEGF-R2 and the common IL-3/GM-CSF receptor beta chain to lipid rafts leads to enhanced p38 activation,” British Journal of Haematology, vol. 145, no. 3, pp. 399–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. W. W. Li, M. Hutnik, and G. Gehr, “Antiangiogenesis in haematological malignancies,” British Journal of Haematology, vol. 143, no. 5, pp. 622–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Cao and Z.-X. Yao, “The Hemangioblast: from Concept to Authentication,” Anatomical Record, vol. 294, no. 4, pp. 580–588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. P. S. Hole, R. L. Darley, and A. Tonks, “Do reactive oxygen species play a role in myeloid leukemias?” Blood, vol. 117, no. 22, pp. 5816–5826, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Casalou, R. Fragoso, J. F. M. Nunes, and S. Dias, “VEGF/PLGF induces leukemia cell migration via P38/ERK1/2 kinase pathway, resulting in Rho GTPases activation and caveolae formation,” Leukemia, vol. 21, no. 7, pp. 1590–1594, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. F. List, B. Glinsmann-Gibson, C. Stadheim, E. J. Meuillet, W. Bellamy, and G. Powis, “Vascular endothelial growth factor receptor-1 and receptor-2 initiate a phosphatidylinositide 3-kinase-dependent clonogenic response in acute myeloid leukemia cells,” Experimental Hematology, vol. 32, no. 6, pp. 526–535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Oshikawa, S.-J. Kim, E. Furuta et al., “Novel role of p66shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 302, no. 3, pp. H724–H732, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Ferrara, K. J. Hillan, H.-P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nature Reviews Drug Discovery, vol. 3, no. 5, pp. 391–400, 2004. View at Google Scholar · View at Scopus
  57. H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Folkman, “Tumor angiogenesis: therapeutic implications,” The New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971. View at Google Scholar · View at Scopus
  59. A. F. G. Quest, L. Leyton, and M. Párraga, “Caveolins, caveolae, and lipid rafts in cellular transport, signaling, and disease,” Biochemistry and Cell Biology, vol. 82, no. 1, pp. 129–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Schlegel and M. P. Lisanti, “The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction,” Cytokine and Growth Factor Reviews, vol. 12, no. 1, pp. 41–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Drab, P. Verkade, M. Elger et al., “Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice,” Science, vol. 293, no. 5539, pp. 2449–2452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. A. M. Kwiatek, R. D. Minshall, D. R. Cool, R. A. Skidgel, A. B. Malik, and C. Tiruppathi, “Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells,” Molecular Pharmacology, vol. 70, no. 4, pp. 1174–1183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. T. A. T. Fong, L. K. Shawver, L. Sun et al., “SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types,” Cancer Research, vol. 59, no. 1, pp. 99–106, 1999. View at Google Scholar · View at Scopus
  64. K. Bedard and K.-H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Han, H. Li, V. A. M. Villar et al., “Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells,” Hypertension, vol. 51, no. 2, pp. 481–487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. F. O. Oakley, R. L. Smith, and J. F. Engelhardt, “Lipid rafts and caveolin-1 coordinate interleukin-1β (IL-1β)-dependent activation of NFκB by controlling endocytosis of Nox2 and IL-1β receptor 1 from the plasma membrane,” The Journal of Biological Chemistry, vol. 284, no. 48, pp. 33255–33264, 2009. View at Publisher · View at Google Scholar · View at Scopus