Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 863421, 12 pages
http://dx.doi.org/10.1155/2014/863421
Review Article

Mechanotransduction in Musculoskeletal Tissue Regeneration: Effects of Fluid Flow, Loading, and Cellular-Molecular Pathways

Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA

Received 2 May 2014; Accepted 13 June 2014; Published 18 August 2014

Academic Editor: Guoxian Pei

Copyright © 2014 Yi-Xian Qin and Minyi Hu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Gerdhem, K. A. M. Ringsberg, K. Åkesson, and K. J. Obrant, “Influence of muscle strength, physical activity and weight on bone mass in a population-based sample of 1004 elderly women,” Osteoporosis International, vol. 14, no. 9, pp. 768–772, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Gerdhem, K. A. M. Ringsberg, H. Magnusson, K. J. Obrant, and K. Åkesson, “Bone mass cannot be predicted by estimations of frailty in elderly ambulatory women,” Gerontology, vol. 49, no. 3, pp. 168–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. LeBlanc, C. Lin, L. Shackelford et al., “Muscle volume, MRI relaxation times (T2), and body composition after spaceflight,” Journal of Applied Physiology, vol. 89, no. 6, pp. 2158–2164, 2000. View at Google Scholar · View at Scopus
  4. J. Wolff, Das Gesetz der Transformation der Knochen, Auflage, Berlin, Germany, 1892.
  5. J. Wolff, The Law of Bone Remodeling, Springer, Berlin, Germany, 1986.
  6. F. G. Evans and R. Vincentelli, “Relations of the compressive properties of human cortical bone to histological structure and calcification,” Journal of Biomechanics, vol. 7, no. 1, pp. 1–10, 1974. View at Publisher · View at Google Scholar · View at Scopus
  7. R. B. Martin and D. B. Burr, Structure, Function and Adaptation of Compact Bone, Raven Press, New York, NY, USA, 1989.
  8. I. A. Stokes, “Analysis of symmetry of vertebral body loading consequent to lateral spinal curvature,” Spine, vol. 22, no. 21, pp. 2495–2503, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. T. S. Gross, J. L. Edwards, K. J. Mcleod, and C. T. Rubin, “Strain gradients correlate with sites of periosteal bone formation,” Journal of Bone and Mineral Research, vol. 12, no. 6, pp. 982–988, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. X. Qin, M. W. Otter, C. T. Rubin, and K. J. McLeod, “The influence of intramedullary hydrostatic pressure on transcortical fluid flow patterns in bone,” Transactions of the Annual Meeting of the Orthopaedic Research Society, vol. 22, p. 885, 1997. View at Google Scholar
  11. C. T. Rubin and L. E. Lanyon, “Regulation of bone formation by applied dynamic loads,” Journal of Bone and Joint Surgery A, vol. 66, no. 3, pp. 397–402, 1984. View at Google Scholar · View at Scopus
  12. C. H. Turner, “Site-specific skeletal effects of exercise: importance of interstitial fluid pressure,” Bone, vol. 24, no. 3, pp. 161–162, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. H. H. Jones, J. D. Priest, W. C. Hayes, C. C. Tichenor, and D. A. Nagel, “Humeral hypertrophy in response to exercise,” Journal of Bone and Joint Surgery A, vol. 59, no. 2, pp. 204–208, 1977. View at Google Scholar · View at Scopus
  14. B. Krolner, B. Toft, S. P. Nielsen, and E. Tondevold, “Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial,” Clinical Science, vol. 64, no. 5, pp. 541–546, 1983. View at Google Scholar · View at Scopus
  15. B. E. Nilsson and N. E. Westlin, “Bone density in athletes,” Clinical Orthopaedics and Related Research, vol. 77, pp. 179–182, 1971. View at Google Scholar · View at Scopus
  16. M. J. Joyner and D. N. Proctor, “Muscle blood flow during exercise: the limits of reductionism,” Medicine and Science in Sports and Exercise, vol. 31, no. 7, pp. 1036–1040, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Joyner, “Blood pressure and exercise: Failing the acid test,” Journal of Physiology, vol. 537, no. 2, p. 331, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Hicks, S. McGill, and R. L. Hughson, “Tissue oxygenation by near-infrared spectroscopy and muscle blood flow during isometric contractions of the forearm,” Canadian Journal of Applied Physiology, vol. 24, no. 3, pp. 216–230, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. M. H. Mayet-Sornay, H. Hoppeler, B. S. Shenkman, and D. Desplanches, “Structural changes in arm muscles after microgravity,” Journal of Gravitational Physiology, vol. 7, pp. S43–S44, 2000. View at Google Scholar · View at Scopus
  20. L. V. Serova, “Microgravity and aging of animals,” Journal of Gravitational Physiology, vol. 8, no. 1, pp. P137–P138, 2001. View at Google Scholar · View at Scopus
  21. V. A. Convertino, “Mechanisms of microgravity induced orthostatic intolerance: implications for effective countermeasures,” Journal of Gravitational Physiology, vol. 9, pp. 1–13, 2002. View at Google Scholar
  22. M. H. Laughlin, “The muscle pump: what question do we want to answer?” Journal of Applied Physiology, vol. 99, no. 2, p. 774, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. W. Otter, Y. X. Qin, C. T. Rubin, and K. J. McLeod, “Does bone perfusion/reperfusion initiate bone remodeling and the stress fracture syndrome?” Medical Hypotheses, vol. 53, no. 5, pp. 363–368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Winet, B. Noble, and D. Jones, “A bone fluid flow hypothesis for muscle pump-driven capillary filtration: II Proposed role for exercise in erodible scaffold implant incorporation,” European Cells and Materials, vol. 6, pp. 1–11, 2003. View at Google Scholar · View at Scopus
  25. D. P. Fyhrie and D. R. Carter, “A unifying principle relating stress to trabecular bone morphology,” Journal of Orthopaedic Research, vol. 4, no. 3, pp. 304–317, 1986. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Huiskes, H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Slooff, “Adaptive bone-remodeling theory applied to prosthetic-design analysis,” Journal of Biomechanics, vol. 20, no. 11-12, pp. 1135–1150, 1987. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Frost, Intermediary Organization of the Skeleton, CRC Press, Boca Raton, Fla, USA, 1986.
  28. C. T. Rubin, T. S. Gross, K. J. Mcleod, and S. D. Bain, “Morphologic stages in lamellar bone formation stimulated by a potent mechanical stimulus,” Journal of Bone and Mineral Research, vol. 10, no. 3, pp. 488–495, 1995. View at Google Scholar · View at Scopus
  29. S. A. Goldstein, L. S. Mattews, J. L. Kuhn, and S. J. Hollister, “Trabecular bone remodeling: an experimental model,” Journal of Biomechanics, vol. 24, no. 1, pp. 135–150, 1991. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Richards, K. M. Kozloff, J. A. Goulet, and S. A. Goldstein, “Increased distraction rates influence precursor tissue composition without affecting bone regeneration,” Journal of Bone and Mineral Research, vol. 15, no. 5, pp. 982–989, 2000. View at Google Scholar · View at Scopus
  31. K. McLeod and C. T. Rubin, “Sensitivity of the bone remodeling response to the frequency of applied strain,” Transactions of the Orthopaedic Research Society, vol. 17, p. 533, 1992. View at Google Scholar
  32. Y.-X. Qin, C. T. Rubin, and K. J. McLeod, “Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology,” Journal of Orthopaedic Research, vol. 16, no. 4, pp. 482–489, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Qin and H. Lam, “Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation,” Journal of Biomechanics, vol. 42, no. 2, pp. 140–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. H. Turner, I. Owan, and Y. Takano, “Mechanotransduction in bone: role of strain rate,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 269, no. 3, pp. E438–E442, 1995. View at Google Scholar · View at Scopus
  35. S. Judex, T. S. Gross, and R. F. Zernicke, “Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton,” Journal of Bone and Mineral Research, vol. 12, no. 10, pp. 1737–1745, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Judex and R. F. Zernicke, “High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation,” Journal of Applied Physiology, vol. 88, no. 6, pp. 2183–2191, 2000. View at Google Scholar · View at Scopus
  37. A. G. Robling, K. M. Duijvelaar, J. V. Geevers, N. Ohashi, and C. H. Turner, “Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force,” Bone, vol. 29, no. 2, pp. 105–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. C. T. Rubin and K. J. McLeod, “Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain,” Clinical Orthopaedics and Related Research, no. 298, pp. 165–174, 1994. View at Google Scholar · View at Scopus
  39. K. Piekarski and M. Munro, “Transport mechanism operating between blood supply and osteocytes in long bones,” Nature, vol. 269, no. 5623, pp. 80–82, 1977. View at Publisher · View at Google Scholar · View at Scopus
  40. K. M. Reich, C. V. Gay, and J. A. Frangos, “Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production,” Journal of Cellular Physiology, vol. 143, no. 1, pp. 100–104, 1990. View at Publisher · View at Google Scholar · View at Scopus
  41. C. H. Turner, M. R. Forwood, and M. W. Otter, “Mechanotransduction in bone: do bone cells act as sensors of fluid flow?” The FASEB Journal, vol. 8, no. 11, pp. 875–878, 1994. View at Google Scholar · View at Scopus
  42. S. Weinbaum, S. C. Cowin, and Y. Zeng, “A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses,” Journal of Biomechanics, vol. 27, no. 3, pp. 339–360, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Weinbaum, P. Guo, and L. You, “A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes,” Biorheology, vol. 38, no. 2-3, pp. 119–142, 2001. View at Google Scholar · View at Scopus
  44. J. You, C. E. Yellowley, H. J. Donahue, Y. Zhang, Q. Chen, and C. R. Jacobs, “Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow,” Journal of Biomechanical Engineering, vol. 122, no. 4, pp. 387–393, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. S. R. Pollack, R. Salzstein, and D. Pienkowski, “Streaming potential in fluid filled bone,” Ferroelectrics, vol. 60, pp. 297–309, 1984. View at Google Scholar
  46. R. J. Montgomery, B. D. Sutker, J. T. Bronk, S. R. Smith, and P. J. Kelly, “Interstitial fluid flow in cortical bone,” Microvascular Research, vol. 35, no. 3, pp. 295–307, 1988. View at Publisher · View at Google Scholar · View at Scopus
  47. R. A. Salzstein and S. R. Pollack, “Electromechanical potentials in cortical bone: II. Experimental analysis,” Journal of Biomechanics, vol. 20, no. 3, pp. 271–280, 1987. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Skripitz and P. Aspenberg, “Pressure-induced periprosthetic osteolysis: a rat model,” Journal of Orthopaedic Research, vol. 18, no. 3, pp. 481–484, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. P. J. Kelly and J. T. Bronk, “Venous pressure and bone formation,” Microvascular Research, vol. 39, no. 3, pp. 364–375, 1990. View at Publisher · View at Google Scholar · View at Scopus
  50. A. P. Bergula, W. Huang, and J. A. Frangos, “Femoral vein ligation increases bone mass in the hindlimb suspended rat,” Bone, vol. 24, no. 3, pp. 171–177, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Hu and Y. X. Qin, “Dynamic fluid flow stimulation on cortical bone and alterations of the gene expressions of osteogenic growth factors and transcription factors in a rat functional disuse model,” Archives of Biochemistry and Biophysics, vol. 545, pp. 154–161, 2014. View at Publisher · View at Google Scholar
  52. H. Lam and Y. Qin, “The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model,” Bone, vol. 43, no. 6, pp. 1093–1100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. X. Qin, K. McLeod, and C. T. Rubin, “Intramedullary pressure indued fluid flow in bone,” Annals of Biomedical Engineering, p. 88, 1999. View at Google Scholar
  54. Y. Qin, H. Lam, S. Ferreri, and C. Rubin, “Dynamic skeletal muscle stimulation and its potential in bone adaptation,” Journal of Musculoskeletal Neuronal Interactions, vol. 10, no. 1, pp. 12–24, 2010. View at Google Scholar · View at Scopus
  55. S. L. Ferreri, R. Talish, T. Trandafir, and Y. Qin, “Mitigation of bone loss with ultrasound induced dynamic mechanical signals in an OVX induced rat model of osteopenia,” Bone, vol. 48, no. 5, pp. 1095–1102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Hu, J. Cheng, and Y. X. Qin, “Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model,” Bone, vol. 51, no. 4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. J. E. Sherry, K. M. Oehrlein, K. S. Hegge, and B. J. Morgan, “Effect of burst-mode transcutaneous electrical nerve stimulation on peripheral vascular resistance,” Physical Therapy, vol. 81, no. 6, pp. 1183–1191, 2001. View at Google Scholar · View at Scopus
  58. S. Park and M. Silva, “Neuromuscular electrical stimulation enhances fracture healing: results of an animal model,” Journal of Orthopaedic Research, vol. 22, no. 2, pp. 382–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Caulkins, E. Ebramzadeh, and H. Winet, “Skeletal muscle contractions uncoupled from gravitational loading directly increase cortical bone blood flow rates in vivo,” Journal of Orthopaedic Research, vol. 27, no. 5, pp. 651–656, 2009. View at Google Scholar
  60. N. A. Sims and T. J. Martin, “Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit,” BoneKEy Reports, vol. 3, article 481, 2014. View at Publisher · View at Google Scholar
  61. L. J. Raggatt and N. C. Partridge, “Cellular and molecular mechanisms of bone remodeling,” Journal of Biological Chemistry, vol. 285, no. 33, pp. 25103–25108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. L. F. Bonewald, “Osteocytes: a proposed multifunctional bone cell,” Journal of Musculoskeletal Neuronal Interactions, vol. 2, no. 3, pp. 239–241, 2002. View at Google Scholar · View at Scopus
  63. L. F. Bonewald, “Osteocytes as dynamic multifunctional cells,” Annals of the New York Academy of Sciences, vol. 1116, pp. 281–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. L. F. Bonewald and M. L. Johnson, “Osteocytes, mechanosensing and Wnt signaling,” Bone, vol. 42, no. 4, pp. 606–615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. V. J. Armstrong, M. Muzylak, A. Sunters et al., “Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor α,” Journal of Biological Chemistry, vol. 282, no. 28, pp. 20715–20727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. J. A. Robinson, M. Chatterjee-Kishore, P. J. Yaworsky et al., “Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone,” Journal of Biological Chemistry, vol. 281, no. 42, pp. 31720–31728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Z. Ke, W. G. Richards, X. Li, and M. S. Ominsky, “Sclerostin and dickkopf-1 as therapeutic targets in bone diseases,” Endocrine Reviews, vol. 33, no. 5, pp. 747–783, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Li, Y. Zhang, H. Kang et al., “Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling,” Journal of Biological Chemistry, vol. 280, no. 20, pp. 19883–19887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Li, P. Liu, W. Liu et al., “Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation,” Nature Genetics, vol. 37, no. 9, pp. 945–952, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Ozcivici, Y. K. Luu, B. Adler et al., “Mechanical signals as anabolic agents in bone,” Nature Reviews Rheumatology, vol. 6, no. 1, pp. 50–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. C. T. Rubin, E. Capilla, Y. K. Luu et al., “Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 45, pp. 17879–17884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. K. Luu, E. Capilla, C. J. Rosen et al., “Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity,” Journal of Bone and Mineral Research, vol. 24, no. 1, pp. 50–61, 2009. View at Google Scholar
  73. Y. K. Luu, J. E. Pessin, S. Judex, J. Rubin, and C. T. Rubin, “Mechanical signals as a non-invasive means to influence mesenchymal stem cell fate, promoting bone and suppressing the fat phenotype,” BoneKEy Osteovision, vol. 6, no. 4, pp. 132–149, 2009. View at Google Scholar
  74. H. Kawaguchi, T. Akune, M. Yamaguchi et al., “Distinct effects of PPARγ insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells,” Journal of Bone and Mineral Metabolism, vol. 23, no. 4, pp. 275–279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Liu, N. Hoppman, J. R. O'Connell et al., “A functional haplotype in EIF2AK3, an ER stress sensor, is associated with lower bone mineral density,” Journal of Bone and Mineral Research, vol. 27, no. 2, pp. 331–341, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. E. C. Taes, B. Lapauw, G. Vanbillemont et al., “Fat mass is negatively associated with cortical bone size in young healthy male siblings,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 7, pp. 2325–2331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. Gong, R. B. Slee, N. Fukai et al., “LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development,” Cell, vol. 107, no. 4, pp. 513–523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. A. G. Robling and C. H. Turner, “Mechanotransduction in bone: genetic effects on mechanosensitivity in mice,” Bone, vol. 31, no. 5, pp. 562–569, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. A. G. Robling and C. H. Turner, “Mechanical signaling for bone modeling and remodeling,” Critical Reviews in Eukaryotic Gene Expression, vol. 19, no. 4, pp. 319–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Sawakami, A. G. Robling, M. Ai et al., “The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment,” The Journal of Biological Chemistry, vol. 281, no. 33, pp. 23698–23711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. D. P. Kiel, M. T. Hannan, B. A. Barton et al., “Insights from the conduct of a device trial in older persons: low magnitude mechanical stimulation for musculoskeletal health,” Clinical Trials, vol. 7, no. 4, pp. 354–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. R. D. Little, J. P. Carulli, R. G. Del Mastro et al., “A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait,” American Journal of Human Genetics, vol. 70, no. 1, pp. 11–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. P. J. Niziolek, M. L. Warman, and A. G. Robling, “Mechanotransduction in bone tissue: the A214V and G171V mutations in Lrp5 enhance load-induced osteogenesis in a surface-selective manner,” Bone, vol. 51, no. 3, pp. 459–465, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. Z. Zhong, X. Zeng, J. Ni, and X. Huang, “Comparison of the biological response of osteoblasts after tension and compression,” European Journal of Orthodontics, vol. 35, no. 1, pp. 59–65, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. T. S. Lisse, R. F. Chun, S. Rieger, J. S. Adams, and M. Hewison, “Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts,” Journal of Bone and Mineral Research, vol. 28, no. 6, pp. 1478–1488, 2013. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Sengul, R. Santisuk, W. Xing, and C. Kesavan, “Systemic administration of an antagomir designed to inhibit mir-92, a regulator of angiogenesis, failed to modulate skeletal anabolic response to mechanical loading,” Physiological Research, vol. 62, no. 2, pp. 221–226, 2013. View at Google Scholar · View at Scopus
  87. J. B. Lian, G. S. Stein, A. J. van Wijnen et al., “MicroRNA control of bone formation and homeostasis,” Nature Reviews Endocrinology, vol. 8, no. 4, pp. 212–227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. E. Luzi, F. Marini, S. C. Sala, I. Tognarini, G. Galli, and M. L. Brandi, “Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor,” Journal of Bone and Mineral Research, vol. 23, no. 2, pp. 287–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Kapinas, C. B. Kessler, and A. M. Delany, “miR-29 suppression of osteonectin in osteoblasts: Regulation during differentiation and by canonical Wnt signaling,” Journal of Cellular Biochemistry, vol. 108, no. 1, pp. 216–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Mizuno, K. Yagi, Y. Tokuzawa et al., “miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation,” Biochemical and Biophysical Research Communications, vol. 368, no. 2, pp. 267–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Zhang, W. Fu, M. He et al., “MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling,” RNA Biology, vol. 8, no. 5, pp. 829–838, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Klein-Nulend, R. G. Bacabac, and M. G. Mullender, “Mechanobiology of bone tissue,” Pathologie Biologie, vol. 53, no. 10, pp. 576–580, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. V. I. Sikavitsas, J. S. Temenoff, and A. G. Mikos, “Biomaterials and bone mechanotransduction,” Biomaterials, vol. 22, no. 19, pp. 2581–2593, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. S. M. Z. Uddin, J. Cheng, W. Lin, and Y. Qin, “Low-intensity amplitude modulated ultrasound increases osteoblastic mineralization,” Cellular and Molecular Bioengineering, vol. 4, no. 1, pp. 81–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. N. Datta, Q. P. Pham, U. Sharma, V. I. Sikavitsas, J. A. Jansen, and A. G. Mikos, “In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2488–2493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. J. R. Mauney, S. Sjostorm, J. Blumberg et al., “Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro,” Calcified Tissue International, vol. 74, no. 5, pp. 458–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Milan, J. A. Planell, and D. Lacroix, “Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold,” Biomaterials, vol. 30, no. 25, pp. 4219–4226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. D. P. Pioletti, “Biomechanics and tissue engineering,” Osteoporosis International, vol. 22, no. 6, pp. 2027–2031, 2011. View at Publisher · View at Google Scholar · View at Scopus