Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 872827, 8 pages
Research Article

Establishing Standards for Studying Renal Function in Mice through Measurements of Body Size-Adjusted Creatinine and Urea Levels

1Postgraduate Course in Health Sciences, Federal University of Triângulo Mineiro, 38061-500 Uberaba, MG, Brazil
2Cefores, Federal University of Triangulo Mineiro, 38015-050 Uberaba, MG, Brazil
3Laboratory of Immunology and Molecular Biology, São Leopoldo Mandic Institute and Research Center, 13045-755 Campinas, SP, Brazil
4Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, 38015-050 Uberaba, MG, Brazil

Received 3 June 2014; Accepted 23 July 2014; Published 27 August 2014

Academic Editor: Tai hoon Kim

Copyright © 2014 Wellington Francisco Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Jaffe, “Ueber den Niederschlag, welchen Pikrinsäure im normalen Harn erzeugt und über eine neue Reaction des Kreatinins,” Zeitschrift fur Physiologische Chemie, vol. 10, pp. 391–400, 1886. View at Google Scholar
  2. R. Bellomo, S. Bagshaw, C. Langenberg et al., “Pre-renal azotemia: a flawed paradigm in critically ill septic patients?” Contributions to Nephrology, vol. 156, pp. 1–9, 2007. View at Google Scholar
  3. K. Jung, C. Wesslau, F. Priem et al., “A. Specific creatinine determination in laboratory animals using the new enzymatic test kit, “Creatinine-PAP”,” Journal of Clinical Chemistry and Clinical Biochemistry, vol. 25, no. 6, pp. 357–361, 1987. View at Google Scholar
  4. B. Kågedal and B. Olsson, “Determination of creatinine in serum by high-performance liquid chromatography: a comparison of three ion-exchange methods,” Journal of Chromatography, vol. 527, no. 1, pp. 21–30, 1990. View at Google Scholar
  5. P. Yuen, S. Dunn, T. Miyaji et al., “A simplified method for HPLC determination of creatinine in mouse serum,” The American Journal of Physiology—Renal Physiology, vol. 286, no. 6, pp. F1116–F1119, 2004. View at Google Scholar
  6. M. Palm and A. Lundblad, “Creatinine concentration in plasma from dog, rat, and mouse: a comparison of 3 different methods,” Veterinary Clinical Pathology, vol. 34, no. 3, pp. 232–236, 2005. View at Google Scholar
  7. J. G. Donnelly, S. J. Soldin, D. A. Nealon et al., “Stability of twenty-five analytes in human serum at 22 degrees C, 4 degrees C, and -20 degrees C,” Pediatric Pathology & Laboratory Medicine, vol. 15, no. 6, pp. 869–874.
  8. J. E. Logan, “The use of urograph for the determination of urea nitrogen concentration in serum and plasma,” Canadian Medical Association Journal, vol. 89, no. 8, pp. 341–344, 1963. View at Google Scholar
  9. R. J. Henry and M. Segalove, “The running of standards in clinical chemistry and the use of the control chart,” Journal of Clinical Pathology, vol. 5, no. 4, pp. 305–311, 1952. View at Publisher · View at Google Scholar · View at Scopus
  10. J. O. Westgard, P. L. Barry, M. R. Hunt, and T. Groth, “A multi-rule Shewhart chart for quality control in clinical chemistry,” Clinical Chemistry, vol. 27, pp. 493–501, 1981. View at Google Scholar
  11. D. Du Bois and E. F. Du Bois, “A formula to estimate the approximate surface area if height and weight be known,” Archives of Internal Medicine, vol. 17, pp. 863–871, 1916. View at Google Scholar
  12. C. D. Schons and R. G. Tavares, “Proposal for the use of a pool of whole blood as internal quality control in hematology,” Jornal Brasileiro de Patologia e Medicina Laboratorial, vol. 46, no. 3, pp. 181–186, 2010. View at Google Scholar · View at Scopus
  13. P. Bonini, M. Plebani, F. Ceriotti, and F. Rubboli, “Errors in laboratory medicine,” Clinical Chemistry, vol. 48, no. 5, pp. 691–698, 2002. View at Google Scholar · View at Scopus
  14. S. Levey and E. R. Jennings, “The use of control charts in the clinical laboratory,” American Journal of Clinical Pathology, vol. 20, no. 11, pp. 1059–1066, 1950. View at Google Scholar · View at Scopus
  15. S. C. Hollensead, W. B. Lockwood, and R. J. Elin, “Errors in pathology and laboratory medicine: consequences and prevention,” Journal of Surgical Oncology, vol. 88, no. 3, pp. 161–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. L. Liang, M. T. Lin, M. J. Hafez et al., “Application of traditional clinical pathology quality control techniques to molecular pathology,” Journal of Molecular Diagnostics, vol. 10, no. 2, pp. 142–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Waterhouse, R. Kunzmann, M. Torres, H. Bertz, and J. Finke, “An internal validation approach and quality control on hematopoietic chimerism testing after allogeneic hematopoietic cell transplantation,” Clinical Chemistry and Laboratory Medicine, vol. 51, no. 2, pp. 363–369, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Reynolds, B. Taillade, C. Médaille et al., “Effect of repeated freeze-thaw cycles on routine plasma biochemical constituents in canine plasma,” Veterinary Clinical Pathology, vol. 35, no. 3, pp. 339–340, 2006. View at Google Scholar
  19. M. Plebani, “Exploring the iceberg of errors in laboratory medicine,” Clinica Chimica Acta, vol. 404, no. 1, pp. 16–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. V. P. Kale, S. G. Patel, P. S. Gunjal et al., “Effect of repeated freezing and thawing on 18 clinical chemistry analytes in rat serum,” Journal of the American Association for Laboratory Animal Science, vol. 51, no. 4, pp. 475–478, 2012. View at Google Scholar · View at Scopus
  21. S. Cuhadar, M. Koseoglu, A. Atay, and A. Dirican, “The effect of storage time and freeze-thaw cycles on the stability of serum samples,” Biochemia Medica, vol. 23, no. 1, pp. 70–77, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Jennings, D. M. Weaver, and A. W. Kruski, “Effects of freeze-thawing on determinations of cholesterol and high-density lipoproteins in baboon sera,” Clinical Chemistry, vol. 25, no. 3, p. 490, 1979. View at Google Scholar · View at Scopus
  23. G. W. Comstock, A. E. Burke, E. P. Norkus, G. B. Gordon, S. C. Hoffman, and K. J. Helzlsouer, “Effects of repeated freeze-thaw cycles on concentrations of cholesterol, micronutrients, and hormones in human plasma and serum,” Clinical Chemistry, vol. 47, no. 1, pp. 139–142, 2001. View at Google Scholar · View at Scopus
  24. A. Simundic and G. Lippi, “Preanalytical phase—a continuous challenge for laboratory professionals,” Biochemia Medica, vol. 22, no. 2, pp. 145–149, 2012. View at Google Scholar · View at Scopus