Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 878450, 14 pages
http://dx.doi.org/10.1155/2014/878450
Review Article

MicroRNAs: Promising New Antiangiogenic Targets in Cancer

1Molecular Oncology Laboratory, General University Hospital Research Fundation, Avda Tres Cruces 2, 46014 Valencia, Spain
2Department of Biotechnology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
3Medical Oncology Department, General University Hospital, Avda Tres Cruces 2, 46014 Valencia, Spain
4Department of Medicine, Universitat de València, Avda Blasco Ibañez 15, 46010 Valencia, Spain

Received 6 June 2014; Accepted 18 July 2014; Published 14 August 2014

Academic Editor: Elisa Giovannetti

Copyright © 2014 Sandra Gallach et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Garzon, M. Fabbri, A. Cimmino, G. A. Calin, and C. M. Croce, “MicroRNA expression and function in cancer,” Trends in Molecular Medicine, vol. 12, no. 12, pp. 580–587, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. S. Meltzer, “Cancer genomics: small RNAs with big impacts,” Nature, vol. 435, no. 7043, pp. 745–746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. N. C. Lau, L. P. Lim, E. G. Weinstein, and D. P. Bartel, “An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 858–862, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. R. C. Lee and V. Ambros, “An extensive class of small RNAs in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 862–864, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. P. Bartel, “MicroRNAs: Target Recognition and Regulatory Functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ul Hussain, “Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action,” Cell and Tissue Research, vol. 349, no. 2, pp. 405–413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” The EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Denli, B. B. J. Tops, R. H. A. Plasterk, R. F. Ketting, and G. J. Hannon, “Processing of primary microRNAs by the Microprocessor complex,” Nature, vol. 432, no. 7014, pp. 231–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. I. Gregory, K. Yan, G. Amuthan et al., “The Microprocessor complex mediates the genesis of microRNAs,” Nature, vol. 432, no. 7014, pp. 235–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Han, Y. Lee, K. Yeom, Y. Kim, H. Jin, and V. N. Kim, “The Drosha-DGCR8 complex in primary microRNA processing,” Genes and Development, vol. 18, no. 24, pp. 3016–3027, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Han, Y. Lee, K. H. Yeom et al., “Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex,” Cell, vol. 125, no. 5, pp. 887–901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Yi, Y. Qin, I. G. Macara, and B. R. Cullen, “Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs,” Genes & Development, vol. 17, no. 24, pp. 3011–3016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear Export of MicroRNA Precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. T. Bohnsack, K. Czaplinski, and D. Görlich, “Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs,” RNA, vol. 10, no. 2, pp. 185–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, “Role for a bidentate ribonuclease in the initiation step of RNA interference,” Nature, vol. 409, no. 6818, pp. 363–366, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Hutvágner, J. McLachlan, A. E. Pasquinelli, É. Bálint, T. Tuschl, and P. D. Zamore, “A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA,” Science, vol. 293, no. 5531, pp. 834–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Hutvágner and P. D. Zamore, “A microRNA in a multiple-turnover RNAi enzyme complex,” Science, vol. 297, no. 5589, pp. 2056–2060, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Mourelatos, J. Dostie, S. Paushkin et al., “miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs,” Genes and Development, vol. 16, no. 6, pp. 720–728, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. W. Carthew and E. J. Sontheimer, “Origins and Mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Krol, I. Loedige, and W. Filipowicz, “The widespread regulation of microRNA biogenesis, function and decay,” Nature Reviews Genetics, vol. 11, no. 9, pp. 597–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. T. A. Farazi, J. I. Hoell, P. Morozov, and T. Tuschl, “MicroRNAs in human cancer,” Advances in Experimental Medicine and Biology, vol. 774, pp. 1–20, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Tagawa and M. Seto, “A microRNA cluster as a target of genomic amplification in malignant lymphoma,” Leukemia, vol. 19, no. 11, pp. 2013–2016, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. T. Huse, C. Brennan, D. Hambardzumyan et al., “The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo,” Genes and Development, vol. 23, no. 11, pp. 1327–1337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Takamizawa, H. Konishi, K. Yanagisawa et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Mayr, M. T. Hemann, and D. P. Bartel, “Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation,” Science, vol. 315, no. 5818, pp. 1576–1579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. J. Chin, E. Ratner, S. Leng et al., “A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk,” Cancer Research, vol. 68, no. 20, pp. 8535–8540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Jiang, H. Zhang, M. Lu et al., “MicroRNA-155 functions as an oncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene,” Cancer Research, vol. 70, no. 8, pp. 3119–3127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Han, P. D. Witmer, E. Casey, D. Valle, and S. Sukumar, “DNA methylation regulates microRNA expression,” Cancer Biology & Therapy, vol. 6, no. 8, pp. 1284–1288, 2007. View at Google Scholar · View at Scopus
  36. Y. Saito and P. A. Jones, “Epigenetic activation of tumor suppressor microRNAs in human cancer cells,” Cell Cycle, vol. 5, no. 19, pp. 2220–2222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Saito, G. Liang, G. Egger et al., “Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells,” Cancer Cell, vol. 9, no. 6, pp. 435–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. U. Lehmann, B. Hasemeier, M. Christgen et al., “Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer,” Journal of Pathology, vol. 214, no. 1, pp. 17–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Chang, E. A. Wentzel, O. A. Kent et al., “Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis,” Molecular Cell, vol. 26, no. 5, pp. 745–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. L. He, X. He, S. W. Lowe, and G. J. Hannon, “microRNAs join the p53 network—another piece in the tumour-suppression puzzle,” Nature Reviews Cancer, vol. 7, no. 11, pp. 819–822, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Landgraf, M. Rusu, R. Sheridan et al., “A mammalian microRNA expression atlas based on small RNA library sequencing,” Cell, vol. 129, no. 7, pp. 1401–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. E. Hatley, D. M. Patrick, M. R. Garcia et al., “Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21,” Cancer Cell, vol. 18, no. 3, pp. 282–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Huang, F. Wu, G. B. Loeb et al., “Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion,” Journal of Biological Chemistry, vol. 284, no. 27, pp. 18515–18524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. K. A. O'Donnell, E. A. Wentzel, K. I. Zeller, C. V. Dang, and J. T. Mendell, “c-Myc-regulated microRNAs modulate E2F1 expression,” Nature, vol. 435, no. 7043, pp. 839–843, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. L. He, J. M. Thomson, M. T. Hemann et al., “A microRNA polycistron as a potential human oncogene,” Nature, vol. 435, no. 7043, pp. 828–833, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Folkman, “Fundamental concepts of the angiogenic process,” Current Molecular Medicine, vol. 3, no. 7, pp. 643–651, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Veikkola, M. Karkkainen, L. Claesson-Welsh, and K. Alitalo, “Regulation of angiogenesis via vascular endothelial growth factor receptors,” Cancer Research, vol. 60, no. 2, pp. 203–212, 2000. View at Google Scholar · View at Scopus
  48. B. R. Zetter, “Angiogenesis and tumor metastasis,” Annual Review of Medicine, vol. 49, pp. 407–424, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Roskoski Jr., “Vascular endothelial growth factor (VEGF) signaling in tumor progression,” Critical Reviews in Oncology Hematology, vol. 62, no. 3, pp. 179–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. K. Gupta and R. Y. Qin, “Mechanism and its regulation of tumor-induced angiogenesis,” World Journal of Gastroenterology, vol. 9, no. 6, pp. 1144–1155, 2003. View at Google Scholar · View at Scopus
  51. G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nature Reviews Cancer, vol. 3, no. 6, pp. 401–410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Papetti and I. M. Herman, “Mechanisms of normal and tumor-derived angiogenesis,” The American Journal of Physiology—Cell Physiology, vol. 282, no. 5, pp. C947–C970, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Katoh, “Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks (Review),” International Journal of Molecular Medicine, vol. 32, no. 4, pp. 763–767, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Welti, S. Loges, S. Dimmeler, and P. Carmeliet, “Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer,” Journal of Clinical Investigation, vol. 123, no. 8, pp. 3190–3200, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Bernstein, S. Y. Kim, M. A. Carmell et al., “Dicer is essential for mouse development,” Nature Genetics, vol. 35, no. 3, pp. 215–217, 2003. View at Publisher · View at Google Scholar
  57. E. Wienholds, M. J. Koudijs, F. J. M. Van Eeden, E. Cuppen, and R. H. A. Plasterk, “The microRNA-producing enzyme Dicer1 is essential for zebrafish development,” Nature Genetics, vol. 35, no. 3, pp. 217–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. W. J. Yang, D. D. Yang, S. Na, G. E. Sandusky, Q. Zhang, and G. Zhao, “Dicer is required for embryonic angiogenesis during mouse development,” The Journal of Biological Chemistry, vol. 280, no. 10, pp. 9330–9335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. A. J. Giraldez, R. M. Cinalli, M. E. Glasner et al., “MicroRNAs regulate brain morphogenesis in zebrafish,” Science, vol. 308, no. 5723, pp. 833–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Kuehbacher, C. Urbich, A. M. Zeiher, and S. Dimmeler, “Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis,” Circulation Research, vol. 101, no. 1, pp. 59–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Suárez, C. Fernández-Hernando, J. S. Pober, and W. C. Sessa, “Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells,” Circulation Research, vol. 100, no. 8, pp. 1164–1173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. G. Ruby, C. H. Jan, and D. P. Bartel, “Intronic microRNA precursors that bypass Drosha processing,” Nature, vol. 448, no. 7149, pp. 83–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. P. N. Plummer, R. Freeman, R. J. Taft et al., “MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells,” Cancer Research, vol. 73, no. 1, pp. 341–352, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. J. E. Fish, M. M. Santoro, S. U. Morton et al., “miR-126 regulates angiogenic signaling and vascular integrity,” Developmental Cell, vol. 15, no. 2, pp. 272–284, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. L. H. Parker, M. Schmidt, S. Jin et al., “The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation,” Nature, vol. 428, no. 6984, pp. 754–758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Campagnolo, A. Leahy, S. Chitnis et al., “EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury,” The American Journal of Pathology, vol. 167, no. 1, pp. 275–284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Soncin, V. Mattot, F. Lionneton et al., “VE-statin, an endothelial repressor of smooth muscle cell migration,” EMBO Journal, vol. 22, no. 21, pp. 5700–5711, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Wang, A. B. Aurora, B. A. Johnson et al., “The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis,” Developmental Cell, vol. 15, no. 2, pp. 261–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, and T. Tuschl, “Identification of tissue-specific MicroRNAs from mouse,” Current Biology, vol. 12, no. 9, pp. 735–739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Wienholds, W. P. Kloosterman, E. Miska et al., “MicroRNA expression in zebrafish embryonic development,” Science, vol. 309, no. 5732, pp. 310–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Kuhnert, M. R. Mancuso, J. Hampton et al., “Attribution of vascular phenotypes of the murine Egf17 locus to the microRNA miR-126,” Development, vol. 135, no. 24, pp. 3989–3993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. K. J. Png, N. Halberg, M. Yoshida, and S. F. Tavazoie, “A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells,” Nature, vol. 481, no. 7380, pp. 190–196, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Poliseno, A. Tuccoli, L. Mariani et al., “MicroRNAs modulate the angiogenic properties of HUVECs,” Blood, vol. 108, no. 9, pp. 3068–3071, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Le Sage, R. Nagel, D. A. Egan et al., “Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation,” The EMBO Journal, vol. 26, no. 15, pp. 3699–3708, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Suárez and W. C. Sessa, “MicroRNAs as novel regulators of angiogenesis,” Circulation Research, vol. 104, no. 4, pp. 442–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Papapetropoulos, G. García-Cardeña, J. A. Madri, and W. C. Sessa, “Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells,” Journal of Clinical Investigation, vol. 100, no. 12, pp. 3131–3139, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Dentelli, A. Rosso, F. Orso, C. Olgasi, D. Taverna, and M. F. Brizzi, “MicroRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 8, pp. 1562–1568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Nicoli, C. Knyphausen, L. J. Zhu, A. Lakshmanan, and N. D. Lawson, “MiR-221 is required for endothelial tip cell behaviors during vascular development,” Developmental Cell, vol. 22, no. 2, pp. 418–429, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Pineau, S. Volinia, K. McJunkin et al., “miR-221 overexpression contributes to liver tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 264–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Venturini, K. Battmer, M. Castoldi et al., “Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells,” Blood, vol. 109, no. 10, pp. 4399–4405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J. T. Mendell, “miRiad roles for the miR-17-92 cluster in development and disease,” Cell, vol. 133, no. 2, pp. 217–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Ota, H. Tagawa, S. Karnan et al., “Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma,” Cancer Research, vol. 64, no. 9, pp. 3087–3095, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Kuhnert and C. J. Kuo, “miR-17-92 angiogenesis micromanagement,” Blood, vol. 115, no. 23, pp. 4631–4633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Tréguer, E. Heinrich, K. Ohtani, A. Bonauer, and S. Dimmeler, “Role of the microRNA-17-92 cluster in the endothelial differentiation of stem cells,” Journal of Vascular Research, vol. 49, no. 5, pp. 447–460, 2012. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Dews, A. Homayouni, D. Yu et al., “Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster,” Nature Genetics, vol. 38, no. 9, pp. 1060–1065, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. C. Doebele, A. Bonauer, A. Fischer et al., “Members of the microRNA-17–92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells,” Blood, vol. 115, no. 23, pp. 4944–4950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Bonauer, G. Carmona, M. Iwasaki et al., “MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in Mice,” Science, vol. 324, no. 5935, pp. 1710–1713, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Yin, R. Wang, L. Guo, W. Zhang, and Y. Lu, “MiR-17-3p inhibits angiogenesis by downregulating flk-1 in the cell growth signal pathway,” Journal of Vascular Research, vol. 50, no. 2, pp. 157–166, 2013. View at Publisher · View at Google Scholar · View at Scopus
  89. A. van Mil, S. Grundmann, M. Goumans et al., “MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release,” Cardiovascular Research, vol. 93, no. 4, pp. 655–665, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. L. Fang, W. W. Du, W. Yang et al., “MiR-93 enhances angiogenesis and metastasis by targeting LATS2,” Cell Cycle, vol. 11, no. 23, pp. 4352–4365, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. X. Huang, Q.-T. Le, and A. J. Giaccia, “MiR-210—micromanager of the hypoxia pathway,” Trends in Molecular Medicine, vol. 16, no. 5, pp. 230–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. J. M. Brown and A. J. Giaccia, “The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy,” Cancer Research, vol. 58, no. 7, pp. 1408–1416, 1998. View at Google Scholar · View at Scopus
  93. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, no. 6801, pp. 249–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Liu, S. R. Cox, T. Morita, and S. Kourembanas, “Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: Identification of a 5′ enhancer,” Circulation Research, vol. 77, no. 3, pp. 638–643, 1995. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Shweiki, A. Itin, D. Soffer, and E. Keshet, “Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis,” Nature, vol. 359, no. 6398, pp. 843–845, 1992. View at Publisher · View at Google Scholar · View at Scopus
  96. J. A. Foekens, A. M. Sieuwerts, M. Smid et al., “Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13021–13026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Fasanaro, Y. D'Alessandra, V. Di Stefano et al., “MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3,” Journal of Biological Chemistry, vol. 283, no. 23, pp. 15878–15883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. L. Lou, F. Guo, F. L. Liu et al., “MiR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia,” Molecular and Cellular Biochemistry, vol. 370, no. 1-2, pp. 45–51, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Kosaka, H. Iguchi, K. Hagiwara, Y. Yoshioka, F. Takeshita, and T. Ochiya, “Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic micrornas regulate cancer cell metastasis,” The Journal of Biological Chemistry, vol. 288, no. 15, pp. 10849–10859, 2013. View at Publisher · View at Google Scholar · View at Scopus
  100. A. S. Ho, X. Huang, H. Cao et al., “Circulating miR-210 as a novel hypoxia marker in pancreatic cancer,” Translational Oncology, vol. 3, no. 2, pp. 109–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Zhao, G. Li, M. Péoc'h, C. Genin, and M. Gigante, “Serum miR-210 as a novel biomarker for molecular diagnosis of clear cell renal cell carcinoma,” Experimental and Molecular Pathology, vol. 94, no. 1, pp. 115–120, 2013. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Cascio, A. D'Andrea, R. Ferla et al., “miR-20b modulates VEGF expression by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells,” Journal of Cellular Physiology, vol. 224, no. 1, pp. 242–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. Z. Lei, B. Li, Z. Yang et al., “Regulation of HIF-1α and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration,” PLoS ONE, vol. 4, no. 10, Article ID e7629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Z. Liu, C. Li, Q. Chen et al., “Mir-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression,” PLoS ONE, vol. 6, no. 4, Article ID e19139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Polytarchou, D. Iliopoulos, M. Hatziapostolou et al., “Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation,” Cancer Research, vol. 71, no. 13, pp. 4720–4731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. P. A. Gregory, A. G. Bert, E. L. Paterson et al., “The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1,” Nature Cell Biology, vol. 10, no. 5, pp. 593–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Korpal, E. S. Lee, G. Hu, and Y. Kang, “The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2,” The Journal of Biological Chemistry, vol. 283, no. 22, pp. 14910–14914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, “The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2,” Genes and Development, vol. 22, no. 7, pp. 894–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. C. Chan, S. Khanna, S. Roy, and C. K. Sen, “MiR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells,” The Journal of Biological Chemistry, vol. 286, no. 3, pp. 2047–2056, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. L. Shi, S. Zhang, H. Wu et al., “MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway,” PLoS ONE, vol. 8, no. 10, Article ID e78344, 2013. View at Publisher · View at Google Scholar
  111. M. Yamakuchi, C. D. Lotterman, C. Bao et al., “P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6334–6339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. S. T. Cha, P. S. Chen, G. Johansson et al., “MicroRNA-519c suppresses hypoxia-inducible factor-1α expression and tumor angiogenesis,” Cancer Research, vol. 70, no. 7, pp. 2675–2685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Ghosh, I. V. Subramanian, N. Adhikari et al., “Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis,” The Journal of Clinical Investigation, vol. 120, no. 11, pp. 4141–4154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. Z. Hua, Q. Lv, W. Ye et al., “Mirna-directed regulation of VEGF and other angiogenic under hypoxia,” PLoS ONE, vol. 1, article e116, no. 1, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Cimmino, G. A. Calin, M. Fabbri et al., “miR-15 and miR-16 induce apoptosis by targeting BCL2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 13944–13949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Y. Sun, X. M. She, Y. B. Qin et al., “miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF,” Carcinogenesis, vol. 34, no. 2, pp. 426–435, 2013. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Chamorro-Jorganes, E. Araldi, L. O. F. Penalva, D. Sandhu, C. Fernández-Hernando, and Y. Suárez, “MicroRNA-16 and MicroRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 11, pp. 2595–2606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Dejean, M. H. Renalier, M. Foisseau et al., “Hypoxia-microRNA-16 downregulation induces VEGF expression in anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas,” Leukemia, vol. 25, no. 12, pp. 1882–1890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. D. Y. Lee, Z. Deng, C. H. Wang, and B. B. Yang, “MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 51, pp. 20350–20355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Würdinger, B. A. Tannous, O. Saydam et al., “miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells,” Cancer Cell, vol. 14, no. 5, pp. 382–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. J. He, Y. Jing, W. Li et al., “Roles and Mechanism of miR-199a and miR-125b in Tumor Angiogenesis,” PLoS ONE, vol. 8, no. 2, Article ID e56647, 2013. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Kanitz, J. Imig, P. J. Dziunycz et al., “The expression levels of microRNA-361-5p and its target VEGFA are inversely correlated in human cutaneous squamous cell carcinoma,” PLoS ONE, vol. 7, no. 11, Article ID e49568, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. D. Hassel, P. Cheng, M. P. White et al., “MicroRNA-10 regulates the angiogenic behavior of zebrafish and human endothelial cells by promoting vascular endothelial growth factor signaling,” Circulation Research, vol. 111, no. 11, pp. 1421–1433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Stahlhut, Y. Suárez, J. Lu, Y. Mishima, and A. J. Giraldez, “miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish,” Development, vol. 139, no. 23, pp. 4356–4364, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. D. Tehler, N. M. Høyland-Kroghsbo, and A. H. Lund, “The miR-10 microRNA precursor family,” RNA Biology, vol. 8, no. 5, pp. 728–734, 2011. View at Google Scholar · View at Scopus
  126. A. H. Lund, “MiR-10 in development and cancer,” Cell Death and Differentiation, vol. 17, no. 2, pp. 209–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. L. Ma, J. Teruya-Feldstein, and R. A. Weinberg, “Tumour invasion and metastasis initiated by microRNA-10b in breast cancer,” Nature, vol. 449, no. 7163, pp. 682–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. R. M. O'Connell, D. S. Rao, A. A. Chaudhuri, and D. Baltimore, “Physiological and pathological roles for microRNAs in the immune system,” Nature Reviews Immunology, vol. 10, no. 2, pp. 111–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. X. Shen, J. Fang, X. Lv et al., “Heparin impairs angiogenesis through inhibition of microRNA-10b,” The Journal of Biological Chemistry, vol. 286, no. 30, pp. 26616–26627, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. B. Zhou, R. Ma, W. Si et al., “MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth,” Cancer Letters, vol. 333, no. 2, pp. 159–169, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. Z.-M. Shi, J. Wang, Z. Yan et al., “MiR-128 inhibits tumor growth and angiogenesis by targeting p70S6K1,” PLoS ONE, vol. 7, no. 3, Article ID e32709, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. Q. Xu, L. Liu, X. Qian et al., “MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis,” Nucleic Acids Research, vol. 40, no. 2, pp. 761–774, 2012. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Chen and D. H. Gorski, “Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5,” Blood, vol. 111, no. 3, pp. 1217–1226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Anand, B. K. Majeti, L. M. Acevedo et al., “MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis,” Nature Medicine, vol. 16, no. 8, pp. 909–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. Z. T. Chai, J. Kong, X. D. Zhu, Y. Y. Zhang, L. Lu, and J. M. Zhou, “MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2alpha/Akt/HIF-1alpha pathway in hepatocellular carcinoma,” PLoS ONE, vol. 8, no. 10, Article ID e77957, 2013. View at Google Scholar
  136. X. Yang, X. F. Zhang, X. Lu et al., “MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway,” Hepatology, vol. 59, no. 5, pp. 1874–1885, 2014. View at Publisher · View at Google Scholar
  137. S. Anand, “A brief primer on microRNAs and their roles in angiogenesis,” Vascular Cell, vol. 5, no. 1, article 2, 2013. View at Publisher · View at Google Scholar · View at Scopus
  138. C. Esau, X. Kang, E. Peralta et al., “MicroRNA-143 regulates adipocyte differentiation,” The Journal of Biological Chemistry, vol. 279, no. 50, pp. 52361–52365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. J. Krützfeldt, N. Rajewsky, R. Braich et al., “Silencing of microRNAs in vivo with ‘antagomirs’,” Nature, vol. 438, no. 7068, pp. 685–689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Krützfeldt, S. Kuwajima, R. Braich et al., “Specificity, duplex degradation and subcellular localization of antagomirs,” Nucleic Acids Research, vol. 35, no. 9, pp. 2885–2892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. J. Elmén, M. Lindow, A. Silahtaroglu et al., “Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver,” Nucleic Acids Research, vol. 36, no. 4, pp. 1153–1162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. M. S. Ebert and P. A. Sharp, “MicroRNA sponges: progress and possibilities,” RNA, vol. 16, no. 11, pp. 2043–2050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. C. Esau, S. Davis, S. F. Murray et al., “miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting,” Cell Metabolism, vol. 3, no. 2, pp. 87–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. A. G. Bader, D. Brown, J. Stoudemire, and P. Lammers, “Developing therapeutic microRNAs for cancer,” Gene Therapy, vol. 18, no. 12, pp. 1121–1126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. J. Ji, J. Shi, A. Budhu et al., “MicroRNA expression, survival, and response to interferon in liver cancer,” The New England Journal of Medicine, vol. 361, no. 15, pp. 1437–1447, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. A. G. Bader, “MiR-34 - a microRNA replacement therapy is headed to the clinic,” Frontiers in Genetics, vol. 3, article 120, 2012. View at Publisher · View at Google Scholar · View at Scopus