Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 906097, 11 pages
http://dx.doi.org/10.1155/2014/906097
Research Article

Successive Nonstatistical and Statistical Approaches for the Improved Antibiotic Activity of Rare Actinomycete Nonomuraea sp. JAJ18

Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625 021, India

Received 3 February 2014; Accepted 7 August 2014; Published 3 September 2014

Academic Editor: Paul M. Tulkens

Copyright © 2014 Polpass Arul Jose and Solomon Robinson David Jebakumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Badji, A. Mostefaoui, N. Sabaou et al., “Isolation and partial characterization of antimicrobial compounds from a new strain Nonomuraea sp. NM94,” Journal of Industrial Microbiology and Biotechnology, vol. 34, no. 6, pp. 403–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Lazzarini, L. Cavaletti, G. Toppo, and F. Marinelli, “Rare genera of actinomycetes as potential producers of new antibiotics,” Antonie van Leeuwenhoek, vol. 78, no. 3-4, pp. 399–405, 2001. View at Publisher · View at Google Scholar
  3. K. Tiwari and R. K. Gupta, “Rare actinomycetes: a potential storehouse for novel antibiotics,” Critical Reviews in Biotechnology, vol. 32, no. 2, pp. 108–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. P. A. Jose and S. R. D. Jebakumar, “Non-streptomycete actinomycetes nourish the current microbial antibiotic drug discovery,” Frontiers in Microbiology, vol. 4, no. 240, 2013. View at Google Scholar
  5. K. Tiwari and R. K. Gupta, “Diversity and isolation of rare actinomycetes: an overview,” Critical Reviews in Microbiology, vol. 39, no. 3, pp. 256–294, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. P. A. Jose and S. R. D. Jebakumar, “Diverse actinomycetes from Indian coastal solar salterns—a resource for antimicrobial screening,” Journal of Pure and Applied Microbiology, vol. 7, no. 4, pp. 2569–2575, 2013. View at Google Scholar
  7. R. L. Greasham, “Media for microbial fermentations,” in Biotechnology: Volume 3: Bioprocessing, H. J. Rehm, G. Read, A. Puhler, and P. Stagler, Eds., pp. 128–139, Wiley-VCH, New York, NY, USA, 1983. View at Google Scholar
  8. N. Gunnarsson, P. Bruheim, and J. Nielsen, “Production of the glycopeptide antibiotic A40926 by Nonomuraea sp. ATCC 39727: influence of medium composition in batch fermentation,” Journal of Industrial Microbiology and Biotechnology, vol. 30, no. 3, pp. 150–156, 2003. View at Google Scholar · View at Scopus
  9. M. A. Hassan, M. Y. El-Naggar, and W. Y. Said, “Physiological factors affecting the production of an antimicrobial substance by Streptomyces violatus in batch cultures,” Egyptian Journal of Biology, vol. 3, pp. 1–10, 2001. View at Google Scholar
  10. Y. H. Wang, J.-T. Feng, Q. Zhang, and X. Zhang, “Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology,” Journal of Applied Microbiology, vol. 104, no. 3, pp. 735–744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Feng, W. Zhang, L. Han, and X. Zhang, “Statistical optimization of medium components to improve the antibiotic activity of Streptomyces sp. 19G-317,” African Journal of Agricultural Research, vol. 6, no. 19, pp. 4424–4431, 2011. View at Google Scholar · View at Scopus
  12. Y. Wang, X. Fang, F. An, G. Wang, and X. Zhang, “Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology,” Microbial Cell Factories, vol. 10, article 98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Xu and J. Yun, “Optimization of submerged-culture conditions for mycelial growth and exo-biopolymer production by Auricularia polytricha (wood ears fungus) using the methods of uniform design and regression analysis,” Biotechnology and Applied Biochemistry, vol. 38, no. 2, pp. 193–199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Singh and V. Rai, “Improved antimicrobial compound production by a new isolate Streptomyces hygroscopicus MTCC 4003 using Plackett-Burman design and response surface methodology,” Bioinformation, vol. 8, pp. 1021–1025, 2012. View at Google Scholar
  15. K. Adinarayana, P. Ellaiah, B. Srinivasulu, R. Bhavani Devi, and G. Adinarayana, “Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation,” Process Biochemistry, vol. 38, no. 11, pp. 1565–1572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. P. A. Jose and S. R. D. Jebakumar, “Phylogenetic diversity of actinomycetes cultured from coastal multipond solar saltern in Tuticorin, India,” Aquatic Biosystems, vol. 8, article 23, no. 1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. P. W. Maxwell, G. Chen, J. M. Webster, and G. B. Dunphy, “Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus,” Applied and Environmental Microbiology, vol. 60, no. 2, pp. 715–721, 1994. View at Google Scholar · View at Scopus
  18. E. Küster, “Outline of a comparative study of criteria used in characterization of the actinomycetes,” Intetnational Bulletin of Bacteriological Nomenclature and Taxonomy, vol. 9, pp. 97–104, 1959. View at Google Scholar
  19. P. A. Jose and S. R. D. Jebakumar, “Phylogenetic appraisal of antagonistic, slow growing actinomycetes isolated from hypersaline inland solar salterns at Sambhar Salt Lake, India,” Frontiers in Microbiology, vol. 4, article 190, 2013. View at Google Scholar
  20. G. Hobbs, C. M. Frazer, D. C. J. Gardner, F. Flett, and S. G. Oliver, “Pigmented antibiotic production by Streptomyces coelicolor A3(2): Kinetics and the influence of nutrients,” Journal of General Microbiology, vol. 136, no. 11, pp. 2291–2296, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Pandey, A. Shukla, and S. K. Majumdar, “Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus M 27 for the production of an anti bacterial antibiotic,” African Journal of Biotechnology, vol. 4, no. 9, pp. 909–910, 2005. View at Google Scholar · View at Scopus
  22. S. Cho, J. K. Choi, S. Franzblau et al., “Cyclic peptide from Nonomuraea sp., process for the production thereof, and pharmaceutical composition for the prevention or treatment of mycobacteria related disease comprising the same,” Patent WO2012144790 A1, 2012. View at Google Scholar
  23. M. Himabindu and A. Jetty, “Optimization of nutritional requirements for gentamicin production by Micromonospora echinospora,” Indian Journal of Experimental Biology, vol. 44, no. 10, pp. 842–848, 2006. View at Google Scholar · View at Scopus
  24. E. Cimburkova, J. Zima, J. Novak, and Z. Vanek, “Nitrogen regulation of avermectins biosynthesis in Streptomyces avermitilis in a chemically defined medium,” Journal of Basic Microbiology, vol. 28, no. 8, pp. 491–499, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. Lee, I. Kojima, and A. L. Demain, “Effect of nitrogen source on biosynthesis of rapamycin by Streptomyces hygroscopicus,” Journal of Industrial Microbiology and Biotechnology, vol. 19, no. 2, pp. 83–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. L. P. Trenozhnikova, A. K. Khasenova, A. S. Balgimbaeva et al., “Characterization of the antibiotic compound no. 70 produced by Streptomyces sp. IMV-70,” The Scientific World Journal, vol. 2012, Article ID 594231, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. X.-L. Fang, L.-R. Han, X.-Q. Cao, M.-X. Zhu, X. Zhang, and Y.-H. Wang, “Statistical optimization of process variables for antibiotic activity of Xenorhabdus bovienii,” PLoS ONE, vol. 7, no. 6, Article ID e38421, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Rostamza, A. Noohi, and Y. Hamedi, “Enhancement in production of erythromycin by Saccharopolyspora erythraea by the use of suitable industrial seeding-media,” DARU, vol. 16, no. 1, pp. 13–17, 2008. View at Google Scholar · View at Scopus
  29. A. K. Paul and A. K. Banerjee, “Determination of optimum conditions for antibiotic production by Streptomyces galbus,” Folia Microbiologica, vol. 28, no. 5, pp. 397–405, 1983. View at Publisher · View at Google Scholar · View at Scopus
  30. H. M. Atta, B. M. Haroun, and M. A. Khalifa, “Physico-chemical characteristics of vernamycin-A antibiotic biosynthesis by Streptomyces SP-AZ-SH-29,” Journal of Saudi Chemical Society, vol. 15, no. 3, pp. 247–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. C. K. M. Tripathi, M. Khan, V. Praveen, S. Khan, and A. Srivastava, “Enhanced antibiotic production by Streptomyces sindenensis using artificial neural networks coupled with genetic algorithm and Nelder-Mead downhill simplex,” Journal of Microbiology and Biotechnology, vol. 22, no. 7, pp. 939–946, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Gohel, T. Chaudhary, P. Vyas, and H. S. Chhatpar, “Statistical screenings of medium components for the production of chitinase by the marine isolate Pantoea dispersa,” Biochemical Engineering Journal, vol. 28, no. 1, pp. 50–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Guo, L. Shen, Z. Ji, and W. Wu, “Enhanced production of a novel cyclic hexapeptide antibiotic (NW-G01) by Streptomyces antibiotic 313 using response surface methodology,” International Journal of Molecular Sciences, vol. 13, no. 4, pp. 5230–5241, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Chen, M. Wu, Z. Chen, M. Wang, J. Lin, and L. Yang, “Enhancing production of a 24-membered ring macrolide compound by a marine bacterium using response surface methodology,” Journal of Zhejiang University SCIENCE B, vol. 14, pp. 346–354, 2013. View at Google Scholar
  35. P. A. Jose, K. K. Sivakala, and S. R. D. Jebakumar, “Formulation and statistical optimization of culture medium for improved production of antimicrobial compound by Streptomyces sp. JAJ06,” International Journal of Microbiology, vol. 2013, Article ID 526260, 9 pages, 2013. View at Publisher · View at Google Scholar