Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 906104, 9 pages
http://dx.doi.org/10.1155/2014/906104
Research Article

Abnormal Early Gamma Responses to Emotional Faces Differentiate Unipolar from Bipolar Disorder Patients

1Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
2Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
3Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
4Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan
5Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan

Received 15 October 2013; Revised 30 January 2014; Accepted 1 February 2014; Published 13 March 2014

Academic Editor: Yong He

Copyright © 2014 T. Y. Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Kessler, P. Berglund, O. Demler, R. Jin, K. R. Merikangas, and E. E. Walters, “Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication,” Archives of General Psychiatry, vol. 62, no. 6, pp. 593–602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. P. Association and DSM-IV. APATFo, Diagnostic and Statistical Manual of Mental Disorders: DSM-IV, Amer Psychiatric, Arlington, Va, USA, 1994.
  3. D. Muzina, D. Kemp, and R. McIntyre, “Differentiating bipolar disorders from major depressive disorders: treatment implications,” Annals of Clinical Psychiatry, vol. 19, no. 4, pp. 305–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. L. Phillips and E. Vieta, “Identifying functional neuroimaging biomarkers of bipolar disorder: toward DSM-V,” Schizophrenia Bulletin, vol. 33, no. 4, pp. 893–904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. L. Phillips, W. C. Drevets, S. L. Rauch, and R. Lane, “Neurobiology of emotion perception II: implications for major psychiatric disorders,” Biological Psychiatry, vol. 54, no. 5, pp. 515–528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. N. S. Lawrence, A. M. Williams, S. Surguladze et al., “Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression,” Biological Psychiatry, vol. 55, no. 6, pp. 578–587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J. R. C. D. Almeida, A. Versace, A. Mechelli et al., “Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression,” Biological Psychiatry, vol. 66, no. 5, pp. 451–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Y. Liu, J. C. Hsieh, Y. S. Chen, P. C. Tu, T. P. Su, and L. Chen, “Different patterns of abnormal gamma oscillatory activity in unipolar and bipolar disorder patients during an implicit emotion task,” Neuropsychologia, vol. 50, no. 7, pp. 1514–1520, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. I. H. Gotlib, E. Krasnoperova, D. N. Yue, and J. Joormann, “Attentional biases for negative interpersonal stimuli in clinical depression,” Journal of Abnormal Psychology, vol. 113, no. 1, pp. 127–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Bourke, K. Douglas, and R. Porter, “Processing of facial emotion expression in major depression: a review,” Australian and New Zealand Journal of Psychiatry, vol. 44, no. 8, pp. 681–696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Stuhrmann, T. Suslow, and U. Dannlowski, “Facial emotion processing in major depression: a systematic review of neuroimaging findings,” Biology of Mood & Anxiety Disorders, vol. 1, pp. 1–17, 2011. View at Publisher · View at Google Scholar
  12. S. E. Taylor, “Asymmetrical effects of positive and negative events: the mobilization-minimization hypothesis,” Psychological Bulletin, vol. 110, no. 1, pp. 67–85, 1991. View at Google Scholar · View at Scopus
  13. J. T. Cacioppo, W. L. Gardner, and G. G. Berntson, “The affect system has parallel and integrative processing components: form follows function,” Journal of Personality and Social Psychology, vol. 76, no. 5, pp. 839–855, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Kousta, D. P. Vinson, and G. Vigliocco, “Emotion words, regardless of polarity, have a processing advantage over neutral words,” Cognition, vol. 112, no. 3, pp. 473–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Pratto and O. P. John, “Automatic vigilance: the attention-grabbing power of negative social information,” Journal of Personality and Social Psychology, vol. 61, no. 3, pp. 380–391, 1991. View at Google Scholar · View at Scopus
  16. H. Critchley, E. Daly, M. Phillips et al., “Explicit and implicit neural mechanisms for processing of social information from facial expressions: a functional magnetic resonance imaging study,” Human Brain Mapping, vol. 9, no. 2, pp. 93–105, 2000. View at Google Scholar
  17. J. Scheuerecker, T. Frodl, N. Koutsouleris et al., “Cerebral differences in explicit and implicit emotional processing-an fMRI study,” Neuropsychobiology, vol. 56, no. 1, pp. 32–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Pessoa, “On the relationship between emotion and cognition,” Nature Reviews Neuroscience, vol. 9, no. 2, pp. 148–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Tallon-Baudry, O. Bertrand, F. Peronnet, and J. Pernier, “Induced γ-band activity during the delay of a visual short-term memory task in humans,” Journal of Neuroscience, vol. 18, no. 11, pp. 4244–4254, 1998. View at Google Scholar · View at Scopus
  20. E. Rodriguez, N. George, J. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, “Perception's shadow: long-distance synchronization of human brain activity,” Nature, vol. 397, no. 6718, pp. 430–433, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Müller, A. Keil, T. Gruber, and T. Elbert, “Processing of affective pictures modulates right-hemispheric gamma band EEG activity,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1913–1920, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Luo, T. Holroyd, M. Jones, T. Hendler, and J. Blair, “Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG,” NeuroImage, vol. 34, no. 2, pp. 839–847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Sato, T. Kochiyama, S. Uono et al., “Rapid amygdala gamma oscillations in response to fearful facial expressions,” Neuropsychologia, vol. 49, no. 4, pp. 612–617, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Uusitalo and R. J. Ilmoniemi, “Signal-space projection method for separating MEG or EEG into components,” Medical and Biological Engineering and Computing, vol. 35, no. 2, pp. 135–140, 1997. View at Google Scholar · View at Scopus
  25. Y. S. Chen, C. Y. Cheng, J. C. Hsieh, and L. F. Chen, “Maximum contrast beamformer for electromagnetic mapping of brain activity,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 9, pp. 1765–1774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J.-X. Liu, Y.-S. Chen, and L.-F. Chen, “Fast and accurate registration techniques for affine and nonrigid alignment of MR brain images,” Annals of Biomedical Engineering, vol. 38, no. 1, pp. 138–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. C. Costanza and A. Afifi, “Comparison of stopping rules in forward stepwise discriminant analysis,” Journal of the American Statistical Association, vol. 74, no. 368, pp. 777–785, 1979. View at Publisher · View at Google Scholar
  28. R. M. Chapman, J. W. McCrary, M. N. Gardner et al., “Brain ERP components predict which individuals progress to Alzheimer's disease and which do not,” Neurobiology of Aging, vol. 32, no. 10, pp. 1742–1755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Tallon-Baudry and O. Bertrand, “Oscillatory gamma activity in humans and its role in object representation,” Trends in Cognitive Sciences, vol. 3, no. 4, pp. 151–162, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. C. S. Herrmann, M. H. J. Munk, and A. K. Engel, “Cognitive functions of gamma-band activity: memory match and utilization,” Trends in Cognitive Sciences, vol. 8, no. 8, pp. 347–355, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Fan, X. Gu, X. Liu et al., “Involvement of the anterior cingulate and frontoinsular cortices in rapid processing of salient facial emotional information,” NeuroImage, vol. 54, no. 3, pp. 2539–2546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Adolphs, “Neural systems for recognizing emotion,” Current Opinion in Neurobiology, vol. 12, no. 2, pp. 169–177, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Bar, “A cortical mechanism for triggering top-down facilitation in visual object recognition,” Journal of Cognitive Neuroscience, vol. 15, no. 4, pp. 600–609, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Bar and M. Neta, “The proactive brain: using rudimentary information to make predictive judgments,” Journal of Consumer Behaviour, vol. 7, no. 4-5, pp. 319–330, 2008. View at Publisher · View at Google Scholar
  35. J. B. Henriques and R. J. Davidson, “Left frontal hypoactivation in depression,” Journal of Abnormal Psychology, vol. 100, no. 4, pp. 535–545, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. M. T. Mitterschiffthaler, V. Kumari, G. S. Malhi et al., “Neural response to pleasant stimuli in anhedonia: an fMRI study,” NeuroReport, vol. 14, no. 2, pp. 177–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Leppänen and J. K. Hietanen, “Positive facial expressions are recognized faster than negative facial expressions, but why?” Psychological Research, vol. 69, no. 1-2, pp. 22–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Murphy, “The nonconscious discrimination of emotion: evidence for a theoretical distinction between affect and emotion,” Polish Psychological Bulletin, vol. 32, no. 1, pp. 9–15, 2001. View at Google Scholar
  39. P. Winkielman, K. C. Berridge, and J. L. Wilbarger, “Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value,” Personality and Social Psychology Bulletin, vol. 31, no. 1, pp. 121–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. A. Russell and A. Mehrabian, “Evidence for a three-factor theory of emotions,” Journal of Research in Personality, vol. 11, no. 3, pp. 273–294, 1977. View at Google Scholar · View at Scopus
  41. S. Droit-Volet, S. Brunot, and P. M. Niedenthal, “Perception of the duration of emotional events,” Cognition and Emotion, vol. 18, no. 6, pp. 849–858, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. P. J. Uhlhaas, C. Haenschel, D. Nikolić, and W. Singer, “The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia,” Schizophrenia Bulletin, vol. 34, no. 5, pp. 927–943, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Grützner, P. J. Uhlhaas, E. Genc, A. Kohler, W. Singer, and M. Wibral, “Neuroelectromagnetic correlates of perceptual closure processes,” Journal of Neuroscience, vol. 30, no. 24, pp. 8342–8352, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J.-P. Lachaux, N. George, C. Tallon-Baudry et al., “The many faces of the gamma band response to complex visual stimuli,” NeuroImage, vol. 25, no. 2, pp. 491–501, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Ray and J. H. R. Maunsell, “Different origins of gamma rhythm and high-gamma activity in macaque visual cortex,” PLoS Biology, vol. 9, no. 4, Article ID e1000610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. P. J. Uhlhaas, G. Pipa, S. Neuenschwander, M. Wibral, and W. Singer, “A new look at gamma? High- (>60 Hz) γ-band activity in cortical networks: function, mechanisms and impairment,” Progress in Biophysics and Molecular Biology, vol. 105, no. 1-2, pp. 14–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Gray, P. Konig, A. K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties,” Nature, vol. 338, no. 6213, pp. 334–337, 1989. View at Google Scholar · View at Scopus
  48. W. Lutzenberger, F. Pulvermüller, T. Elbert, and N. Birbaumer, “Visual stimulation alters local 40-Hz responses in humans: an EEG-study,” Neuroscience Letters, vol. 183, no. 1-2, pp. 39–42, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Singer and C. M. Gray, “Visual feature integration and the temporal correlation hypothesis,” Annual Review of Neuroscience, vol. 18, pp. 555–586, 1995. View at Google Scholar · View at Scopus