Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 923260, 10 pages
http://dx.doi.org/10.1155/2014/923260
Research Article

Modelling Arterial Pressure Waveforms Using Gaussian Functions and Two-Stage Particle Swarm Optimizer

1School of Control Science and Engineering, Shandong University, Jinan 250061, China
2School of Information Science and Engineering, Shandong University, Jinan 250100, China
3Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
4National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received 21 March 2014; Revised 27 April 2014; Accepted 27 April 2014; Published 20 May 2014

Academic Editor: John J. Gildea

Copyright © 2014 Chengyu Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Changes of arterial pressure waveform characteristics have been accepted as risk indicators of cardiovascular diseases. Waveform modelling using Gaussian functions has been used to decompose arterial pressure pulses into different numbers of subwaves and hence quantify waveform characteristics. However, the fitting accuracy and computation efficiency of current modelling approaches need to be improved. This study aimed to develop a novel two-stage particle swarm optimizer (TSPSO) to determine optimal parameters of Gaussian functions. The evaluation was performed on carotid and radial artery pressure waveforms (CAPW and RAPW) which were simultaneously recorded from twenty normal volunteers. The fitting accuracy and calculation efficiency of our TSPSO were compared with three published optimization methods: the Nelder-Mead, the modified PSO (MPSO), and the dynamic multiswarm particle swarm optimizer (DMS-PSO). The results showed that TSPSO achieved the best fitting accuracy with a mean absolute error (MAE) of 1.1% for CAPW and 1.0% for RAPW, in comparison with 4.2% and 4.1% for Nelder-Mead, 2.0% and 1.9% for MPSO, and 1.2% and 1.1% for DMS-PSO. In addition, to achieve target MAE of 2.0%, the computation time of TSPSO was only 1.5 s, which was only 20% and 30% of that for MPSO and DMS-PSO, respectively.