Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 930308, 11 pages
Research Article

Developmental Stage-Specific Regulation of the Circadian Clock by Temperature in Zebrafish

1Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
2Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
3Tuebingen Hearing Research Centre, Section Physiological Acoustics and Communication, Department of Otolaryngology, Head and Neck Surgery, University of Tuebingen, 72076 Tuebingen, Germany

Received 19 December 2013; Accepted 10 February 2014; Published 27 March 2014

Academic Editor: Yoav Gothilf

Copyright © 2014 Kajori Lahiri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The circadian clock enables animals to adapt their physiology and behaviour in anticipation of the day-night cycle. Light and temperature represent two key environmental timing cues (zeitgebers) able to reset this mechanism and so maintain its synchronization with the environmental cycle. One key challenge is to unravel how the regulation of the clock by zeitgebers matures during early development. The zebrafish is an ideal model for studying circadian clock ontogeny since the process of development occurs ex utero in an optically transparent chorion and many tools are available for genetic analysis. However, the role played by temperature in regulating the clock during zebrafish development is poorly understood. Here, we have established a clock-regulated luciferase reporter transgenic zebrafish line (Tg (−3.1) per1b::luc) to study the effects of temperature on clock entrainment. We reveal that under complete darkness, from an early developmental stage onwards (48 to 72 hpf), exposure to temperature cycles is a prerequisite for the establishment of self-sustaining rhythms of zfper1b, zfaanat2, and zfirbp expression and also for circadian cell cycle rhythms. Furthermore, we show that following the 5–9 somite stage, the expression of zfper1b is regulated by acute temperature shifts.