Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 950516, 9 pages
http://dx.doi.org/10.1155/2014/950516
Research Article

Comparison of Gene and Protein Expressions in Rats Residing in Standard Cages with Those Having Access to an Exercise Wheel

1Department of Kinesiology and Health, Miami University, Oxford, OH 45056, USA
2Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA

Received 30 October 2013; Revised 23 December 2013; Accepted 14 January 2014; Published 25 February 2014

Academic Editor: J. Timothy Lightfoot

Copyright © 2014 Helaine M. Alessio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Emes, L. Goodstadt, E. E. Winter, and C. P. Ponting, “Comparison of the genomes of human and mouse lays the foundation of genome zoology,” Human Molecular Genetics, vol. 12, no. 7, pp. 701–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Paigen, “A miracle enough: the power of mice,” Nature Medicine, vol. 1, no. 3, pp. 215–220, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. N. A. Datson, J. van der Perk, E. R. de Kloet, and E. Vreugdenhil, “Expression profile 30,000 genes in rat hippocampus using SAGE,” Hippocampus, vol. 11, no. 4, pp. 430–444, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Venter, M. D. Adams, E. W. Myers et al., “The sequence of the human genome,” Science, vol. 291, no. 5507, pp. 1304–1351, 2001. View at Google Scholar
  5. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “Membrane structure,” in Molecular Biology of the Cell, pp. 10–25, Garland Science, New York, NY, USA, 5th edition, 2007. View at Google Scholar
  6. R. A. Gibbs, G. M. Weinstock, M. L. Metzker et al., “Genome sequence of the Brown Norway rat yields insights into mammalian evolution,” Nature, vol. 428, no. 6982, pp. 493–521, 2004. View at Publisher · View at Google Scholar
  7. A. Bye, M. A. Høydal, D. Catalucci et al., “Gene expression profiling of skeletal muscle in exercise-trained and sedentary rats with inborn high and low VO2max,” Physiological Genomics, vol. 35, no. 3, pp. 213–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Martin, S. Ji, S. Maudsley, and M. P. Mattson, “‘Control’ laboratory rodents are metabolically morbid: why it matters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6127–6133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. M. Alessio, A. E. Hagerman, S. Nagy et al., “Exercise improves biomarkers of health and stress in animals fed ad libitum,” Physiology & Behavior, vol. 84, no. 1, pp. 65–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. H. M. Alessio, N. B. Schweitzer, A. M. Snedden, P. Callahan, and A. E. Hagerman, “Revisiting influences on tumor development: focusing on laboratory housing,” Journal of the American Association for Laboratory Animal Science, vol. 48, no. 3, pp. 258–262, 2009. View at Google Scholar · View at Scopus
  11. M. P. Mattson and R. Wan, “Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems,” The Journal of Nutritional Biochemistry, vol. 16, no. 3, pp. 129–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. L. Simonsen, H. M. Alessio, P. White, D. L. Newsom, and A. E. Hagerman, “Acute physical activity effects on cardiac gene expression,” Experimental Physiology, vol. 95, no. 11, pp. 1071–1080, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. B. Schweitzer, H. M. Alessio, A. E. Hagerman et al., “Access to exercise and its relation to cardiovascular health and gene expression in laboratory animals,” Life Sciences, vol. 77, no. 18, pp. 2246–2261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. N. B. Schweitzer, H. M. Alessio, S. D. Berry, K. Roeske, and A. E. Hagerman, “Exercise-induced changes in cardiac gene expression and its relation to spatial maze performance,” Neurochemistry International, vol. 48, no. 1, pp. 9–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Bronikowski, P. A. Carter, T. J. Morgan et al., “Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart,” Physiological Genomics, vol. 12, no. 2, pp. 129–138, 2003. View at Google Scholar · View at Scopus
  16. T. Berkelman and T. Stenstedt, “2-D electrophoresis: principles and methods,” Amersham Biosciences, 2002.
  17. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. N. Cortright, M. P. Chandler, P. W. R. Lemon, and S. E. Dicarlo, “Daily exercise reduces fat, protein and body mass in male but not female rats,” Physiology & Behavior, vol. 62, no. 1, pp. 105–111, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. Miles, K. Huber, N. M. Thompson, M. Davison, and B. H. Breier, “Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity,” Endocrinology, vol. 150, no. 1, pp. 179–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. A. Gulve, K. J. Rodnick, E. J. Henriksen, and J. O. Holloszy, “Effects of wheel running on glucose transporter (GLUT4) concentration in skeletal muscle of young adult and old rats,” Mechanisms of Ageing and Development, vol. 67, no. 1-2, pp. 187–200, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. K. O’Connell, M. Posthumus, M. P. Schwellnus, and M. Collins, “Collagen genes and exercise-associated muscle cramping,” Clinical Journal of Sport Medicine, vol. 23, no. 1, pp. 64–69, 2013. View at Publisher · View at Google Scholar
  22. T.-S. Tsao, J. Li, K. S. Chang et al., “Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity,” The FASEB Journal, vol. 15, no. 6, pp. 958–969, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Good, C. A. Coyle, and D. L. Fox, “Nhlh2: a basic helix-loop-helix transcription factor controlling physical activity,” Exercise and Sport Sciences Reviews, vol. 36, no. 4, pp. 187–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Knab, R. S. Bowen, A. T. Hamilton, A. A. Gulledge, and J. T. Lightfoot, “Altered dopaminergic profiles: implications for the regulation of voluntary physical activity,” Behavioural Brain Research, vol. 204, no. 1, pp. 147–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. T. Lightfoot, “Current understanding of the genetic basis for physical activity,” The Journal of Nutrition, vol. 141, no. 3, pp. 526–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. F. W. Booth, M. V. Chakravarthy, and E. E. Spangenburg, “Exercise and gene expression: physiological regulation of the human genome through physical activity,” The Journal of Physiology, vol. 543, no. 2, pp. 399–411, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. R. J. Tunstall, K. A. Mehan, G. D. Wadley et al., “Exercise training increases lipid metabolism gene expression in human skeletal muscle,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 283, no. 1, pp. E66–E72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Yamaguchi, E. Fujimoto, M. Higuchi, and I. Tabata, “A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle,” The Journal of Biochemistry, vol. 148, no. 3, pp. 327–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Lu, C. Vogel, R. Wang, X. Yao, and E. M. Marcotte, “Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation,” Nature Biotechnology, vol. 25, no. 1, pp. 117–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. U. T. Shankavaram, W. C. Reinhold, S. Nishizuka et al., “Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study,” Molecular Cancer Therapeutics, vol. 6, no. 3, pp. 820–832, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. H. Lambertucci, A. C. Levada-Pires, L. V. Rossoni, R. Curi, and T. C. Pithon-Curi, “Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats,” Mechanisms of Ageing and Development, vol. 128, no. 3, pp. 267–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. J. Jeffery, “Moonlighting proteins: old proteins learning new tricks,” Trends in Genetics, vol. 19, no. 8, pp. 415–417, 2003. View at Publisher · View at Google Scholar · View at Scopus