Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 960262, 7 pages
http://dx.doi.org/10.1155/2014/960262
Clinical Study

Evaluation of Virtual Touch Tissue Imaging Quantification, a New Shear Wave Velocity Imaging Method, for Breast Lesion Assessment by Ultrasound

1Breast Unit, University of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
2Institute of Medical Biometry and Informatics, University of Heidelberg, 69120 Heidelberg, Germany

Received 10 January 2014; Revised 15 February 2014; Accepted 19 February 2014; Published 31 March 2014

Academic Editor: Hui-Xiong Xu

Copyright © 2014 Michael Golatta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S.-C. Chen, Y.-C. Cheung, C.-H. Su, M.-F. Chen, T.-L. Hwang, and S. Hsueh, “Analysis of sonographic features for the differentiation of benign and malignant breast tumors of different sizes,” Ultrasound in Obstetrics and Gynecology, vol. 23, no. 2, pp. 188–193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Ohlinger, G. M. Klein, and G. Köhler, “Ultrasound of the breast: value of sonographic criteria for the differential diagnosis of solid lesions,” Ultraschall in der Medizin, vol. 25, no. 1, pp. 48–53, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Rahbar, A. C. Sie, G. C. Hansen et al., “Benign versus malignant solid breast masses: US differentiation,” Radiology, vol. 213, no. 3, pp. 889–894, 1999. View at Google Scholar · View at Scopus
  4. A. T. Stavros, D. Thickman, C. L. Rapp, M. A. Dennis, S. H. Parker, and G. A. Sisney, “Solid breast nodules: use of sonography to distinguish between benign and malignant lesions,” Radiology, vol. 196, no. 1, pp. 123–134, 1995. View at Google Scholar · View at Scopus
  5. A. Thomas, F. Degenhardt, A. Farrokh, S. Wojcinski, T. Slowinski, and T. Fischer, “Significant differentiation of focal breast lesions. Calculation of strain ratio in breast sonoelastography,” Academic Radiology, vol. 17, no. 5, pp. 558–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Navarro, B. Úbeda, M. Vallespí, C. Wolf, L. Casas, and J. L. Browne, “Role of elastography in the assessment of breast lesions: preliminary results,” Journal of Ultrasound in Medicine, vol. 30, no. 3, pp. 313–321, 2011. View at Google Scholar · View at Scopus
  7. E. Regini, S. Bagnera, D. Tota et al., “Role of sonoelastography in characterising breast nodules. Preliminary experience with 120 lesions,” Radiologia Medica, vol. 115, no. 4, pp. 551–562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. J. Parker and R. M. Lerner, “Sonoelasticity of organs: shear waves ring a bell,” Journal of Ultrasound in Medicine, vol. 11, no. 8, pp. 387–392, 1992. View at Google Scholar · View at Scopus
  9. B. S. Garra, E. I. Cespedes, J. Ophir et al., “Elastography of breast lesions: initial clinical results,” Radiology, vol. 202, no. 1, pp. 79–86, 1997. View at Google Scholar · View at Scopus
  10. W. A. Berg, D. O. Cosgrove, C. J. Doré et al., “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology, vol. 262, no. 2, pp. 435–449, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Chang, W. K. Moon, N. Cho et al., “Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases,” Breast Cancer Research and Treatment, vol. 129, no. 1, pp. 89–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Tanter, J. Bercoff, A. Athanasiou et al., “Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging,” Ultrasound in Medicine and Biology, vol. 34, no. 9, pp. 1373–1386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Frey, “Realtime elastography: a new ultrasound procedure for the reconstruction of tissue elasticity,” Radiologe, vol. 43, no. 10, pp. 850–854, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. W. Sewell, “Pathology of benign and malignant breast disorders,” Radiologic Clinics of North America, vol. 33, no. 6, pp. 1067–1080, 1995. View at Google Scholar · View at Scopus
  15. M. Bai, L. Du, J. Gu, F. Li, and X. Jia, “Virtual Touch tissue quantification using acoustic radiation force impulse technology: initial clinical experience with solid breast masses,” Journal of Ultrasound in Medicine, vol. 31, no. 2, pp. 289–294, 2012. View at Google Scholar · View at Scopus
  16. M. Golatta, M. Schweitzer-Martin, A. Harcos et al., “Normal breast tissue stiffness measured by a new ultrasound technique: virtual touch tissue imaging quantification (VTIQ),” European Journal of Radiology, vol. 82, no. 11, pp. e676–e679, 2013. View at Google Scholar
  17. J. H. Yoon, M. H. Kim, E.-K. Kim, H. J. Moon, J. Y. Kwak, and M. J. Kim, “Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions,” The American Journal of Roentgenology, vol. 196, no. 3, pp. 730–736, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Weismann, C. Mayr, H. Egger, and A. Auer, “Breast sonography: 2D, 3D, 4D ultrasound or elastography?” Breast Care, vol. 6, no. 2, pp. 98–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. D. O. Cosgrove, W. A. Berg, C. J. Doré et al., “Shear wave elastography for breast masses is highly reproducible,” European Radiology, vol. 22, no. 5, pp. 1023–1032, 2012. View at Google Scholar
  20. A. Evans, P. Whelehan, K. Thomson et al., “Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification,” British Journal of Cancer, vol. 7, no. 2, pp. 224–229, 2012. View at Google Scholar
  21. A. Evans, P. Whelehan, K. Thomson et al., “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Research, vol. 12, no. 6, article R104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Mendelson, J. Baum, W. Berg, C. Merritt, and E. Rubin, Breast Imaging Reporting and Data System, BI-RADS: Ultrasound, American College of Radiology, Reston, Va, USA, 2003.
  23. W. K. Moon, R.-F. Chang, C.-J. Chen, D.-R. Chen, and W.-L. Chen, “Solid breast masses: classification with computer-aided analysis of continuous US images obtained with probe compression,” Radiology, vol. 236, no. 2, pp. 458–464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Balleyguier, S. Canale, W. B. Hassen et al., “Breast elasticity: principles, technique, results: an update and overview of commercially available software,” European Journal of Radiology, vol. 2, no. 3, pp. 427–434, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 4, pp. 396–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. G. Barr, “Sonographic breast elastography: a primer,” Journal of Ultrasound in Medicine, vol. 31, no. 5, pp. 773–783, 2012. View at Google Scholar
  27. R. G. Barr and Z. Zhang, “Effects of precompression on elasticity imaging of the breast: development of a clinically useful semiquantitative method of precompression assessment,” Journal of Ultrasound in Medicine, vol. 31, no. 6, pp. 895–902, 2012. View at Google Scholar
  28. R. G. Barr, “Shear wave imaging of the breast: still on the learning curve,” Journal of Ultrasound in Medicine, vol. 31, no. 3, pp. 347–350, 2012. View at Google Scholar · View at Scopus
  29. A. Athanasiou, A. Tardivon, M. Tanter et al., “Breast lesions: quantitative elastography with supersonic shear imaging: preliminary results,” Radiology, vol. 256, no. 1, pp. 297–303, 2010. View at Publisher · View at Google Scholar · View at Scopus