Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 971985, 11 pages
http://dx.doi.org/10.1155/2014/971985
Research Article

Isolation and Expression Analysis of Novel Silicon Absorption Gene from Roots of Mangrove (Rhizophora apiculata) via Suppression Subtractive Hybridization

1Laboratory of Plantations Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Land Management, Faculty of Agriculture, 43400 Serdang, Selangor, Malaysia
3Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
4Biological Research Division, GANODROP Unit, Malaysia Palm Oil Board (MPOB), No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

Received 6 June 2013; Revised 17 October 2013; Accepted 21 October 2013; Published 1 January 2014

Academic Editor: Rita Casadio

Copyright © 2014 Mahbod Sahebi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Tanaka, K. Ikeda, M. Ono, and H. Miyasaka, “Isolation of several anti-stress genes from a mangrove plant Avicennia marina,” World Journal of Microbiology and Biotechnology, vol. 18, no. 8, pp. 801–804, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Kitaya, K. Yabuki, M. Kiyota, A. Tani, T. Hirano, and I. Aiga, “Gas exchange and oxygen concentration in pneumatophores and prop roots of four mangrove species,” Trees, vol. 16, no. 2-3, pp. 155–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Ong, “Mangroves and aquaculture in Malaysia,” Ambio, vol. 11, no. 5, pp. 252–257, 1982. View at Google Scholar · View at Scopus
  4. W. H. Berger, V. Smetacek, and G. Wefer, “Ocean productivity and paleoproductivity-an overview,” in Productivity of the Oceans Present and Past: Report of the Dahlem Workshop on Productivity of the Ocean, Life Sciences Research Reports, pp. 1–34, John Wiley & Sons, Chichester, UK, 1989. View at Google Scholar
  5. J. S. Bunt, “How can fragile marine ecosystems best be conserved?” in Use and Misuse of the Seafloor, K. J. Hsu and J. Thiede, Eds., Dahlem Workshop Reports, Environmental Science Research Report, 11, pp. 229–242, John Wiley & Sons, Chichester, UK, 1991. View at Google Scholar
  6. T. C. Jennerjahn and V. Ittekkot, “Relevance of mangroves for the production and deposition of organic matter along tropical continental margins,” Naturwissenschaften, vol. 89, no. 1, pp. 23–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Dodd and Z. Afzal Rafii, “Evolutionary genetics of mangroves: continental drift to recent climate change,” Trees, vol. 16, no. 2-3, pp. 80–86, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. R. S. Dodd, Z. A. Rafii, and A. Bousquet-Mélou, “Evolutionary divergence in the pan-Atlantic mangrove Avicennia germinans,” New Phytologist, vol. 145, no. 1, pp. 115–125, 2001. View at Google Scholar · View at Scopus
  9. T. L. Maguire, P. Saenger, P. Baverstock, and R. Henry, “Microsatellite analysis of genetic structure in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae),” Molecular Ecology, vol. 9, no. 11, pp. 1853–1862, 2001. View at Google Scholar · View at Scopus
  10. N. C. Duke, J. A. H. Benzie, J. A. Goodall, and E. R. Ballment, “Genetic structure and evolution of species in the mangrove genus Avicennia (avicenniaceae) in the Indo-West Pacific,” Evolution, vol. 52, no. 6, pp. 1612–1626, 1998. View at Google Scholar · View at Scopus
  11. M. Lakshmi, S. Rajalakshmi, M. Parani, C. S. Anuratha, and A. Parida, “Molecular phylogeny of mangroves I. Use of molecular markers in assessing the intraspecific genetic variability in the mangrove species Acanthus ilicifolius Linn. (Acanthaceae),” Theoretical and Applied Genetics, vol. 94, no. 8, pp. 1121–1127, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Ball, “Ecophysiology of mangroves,” Trees, vol. 2, no. 3, pp. 129–142, 1988. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Ball, S. S. Mulkey, R. L. Chazdon, and A. P. Smith, “Comparative ecophysiology of mangrove forest and tropical lowland moist rainforest,” in Tropical Forest Plant Ecophysiology, S. S. Mulkey, R. L. Chazdonand, and A. P. Smith, Eds., pp. 461–496, Champan and Hall, New York, NY, USA, 1996. View at Google Scholar
  14. D. M. Alongi, B. F. Clough, P. Dixon, and F. Tirendi, “Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina,” Trees, vol. 17, no. 1, pp. 51–60, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. A. Dannon and K. Wydra, “Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes,” Physiological and Molecular Plant Pathology, vol. 64, no. 5, pp. 233–243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. V. C. Diogo and K. Wydra, “Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure,” Physiological and Molecular Plant Pathology, vol. 70, no. 4–6, pp. 120–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. F. A. R. Peters, L. E. Datnoff, G. H. Korndörfer, K. W. Seebold, and M. C. Rush, “Effect of silicon and host resistance on sheath blight development in rice,” Plant Disease, vol. 85, no. 8, pp. 827–832, 2001. View at Google Scholar · View at Scopus
  18. E. A. Waraich, R. Ahmad, S. Saifullah, M. Y. Ashraf, and E. Ehsanullah, “Role of mineral nutrition in alleviation of drought stress in plants,” Australian Journal of Crop Science, vol. 5, no. 6, pp. 764–777, 2011. View at Google Scholar · View at Scopus
  19. W. Sun, J. Zhang, Q. Fan, G. Xue, Z. Li, and Y. Liang, “Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier,” European Journal of Plant Pathology, vol. 128, no. 1, pp. 39–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Sahai and J. A. Tossell, “Formation energies and NMR chemical calculated for putative serine-silicate complexes in silica biomineralization,” Geochimica et Cosmochimica Acta, vol. 65, no. 13, pp. 2043–2053, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kauss, K. Seehaus, R. Franke, S. Gilbert, R. A. Dietrich, and N. Kröger, “Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants,” The Plant Journal, vol. 33, no. 1, pp. 87–95, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. W. W. Zhang, G. L. Jian, T. F. Jiang, S. Z. Wang, F. J. Qi, and S. C. Xu, “Cotton gene expression profiles in resistant Gossypium hirsutum cv. Zhongzhimian KV1 responding to Verticillium dahliae strain V991 infection,” Molecular Biology Reports, vol. 39, no. 10, pp. 9765–9774, 2012. View at Publisher · View at Google Scholar
  23. M. Sahebi, X. T. Zhang, C. Tezara et al., “Comparison of supression subtractive hybridization with other methods used to identify differentially expressed genes in plants,” in Engineering Research Method, N. M. Adam and S. Sorooshian, Eds., pp. 15–24, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, 2012. View at Google Scholar
  24. M. Sahebi, M. M. Hanafi, S. N. A. Abdullah, N. Nejat, M. Y. Rafii, and P. Azizi, “Extraction of total RNA from mangrove plants to identify different genes involved in its adaptability to the variety of stresses,” Pakistan Journal of Agricultural Science, vol. 50, no. 4, pp. 1–9, 2013. View at Google Scholar
  25. A. Conesa, S. Götz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles, “Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research,” Bioinformatics, vol. 21, no. 18, pp. 3674–3676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. D. J. Schultz, R. Craig, D. L. Cox-Foster, R. O. Mumma, and J. I. Medford, “RNA isolation from recalcitrant plant tissue,” Plant Molecular Biology Reporter, vol. 12, no. 4, pp. 310–316, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Huang and A. Madan, “CAP3: a DNA sequence assembly program,” Genome Research, vol. 9, no. 9, pp. 868–877, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. L. A. Kelley and M. J. E. Sternberg, “Protein structure prediction on the web: a case study using the Phyre server,” Nature Protocols, vol. 4, no. 3, pp. 363–371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. E. F. Pettersen, T. D. Goddard, C. C. Huang et al., “UCSF Chimera—a visualization system for exploratory research and analysis,” Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605–1612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. F. Ma, N. Yamaji, N. Mitani et al., “An efflux transporter of silicon in rice,” Nature, vol. 448, no. 7150, pp. 209–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Yamaji, N. Mitatni, and J. F. Ma, “A transporter regulating silicon distribution in rice shoots,” The Plant Cell, vol. 20, no. 5, pp. 1381–1389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. C. J. Perumalla and M. C. Heath, “The effect of inhibitors of various cellular processes on the wall modifications induced in bean leaves by the cowpea rust fungus,” Physiological and Molecular Plant Pathology, vol. 38, no. 4, pp. 293–300, 1991. View at Google Scholar · View at Scopus
  35. C. Espinoza, C. Medina, S. Somerville, and P. Arce-Johnson, “Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis,” Journal of Experimental Botany, vol. 58, no. 12, pp. 3197–3212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. P. R. O. de Montellano, Cytochrome P450: Structure, Mechanism, and Biochemistry, Springer, Berlin, Germany, 2004.